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ABSTRACT 
The availability of freshwater resources to meet human 
demands has emerged as a top-tier global issue for both 
environment and development. However, many decision-
makers lack the technical expertise to fully understand 
hydrological information. In response to growing concerns 
from private sector actors around water availability, water 
quality, climate change, and increasing demand, we em-
ployed the composite index approach as a robust commu-
nication tool to translate hydrological data into intuitive 
indicators of water-related risks.

We grouped 12 indicators into a framework identifying 
spatial variation in water risks. For 6 of the 12 indicators, 
we used an ensemble of time series estimators, spatial 
regression, and a sparse hydrological model to generate 
novel datasets of water supply and use. We adapted the 
remaining six indicators from existing publications. We 
chose aggregation methods to maximize transparency and 
communicability, and to allow for dynamic weighting to 
reflect different users’ sensitivities to water-related risks. 
We are currently unable to validate overall index scores 
because no datasets of water-related losses exist in the 
public domain. Data availability, specifically for major 
infrastructure (e.g., interbasin transfers) and in-situ water 
quality and river gauge measurements, is the primary 
constraining factor in model accuracy.
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The resulting Aqueduct Water Risk Atlas (Aqueduct) is a 
publicly available, global database and interactive tool that 
maps indicators of water-related risks. Aqueduct enables 
comparison across large geographies to identify regions or 
assets deserving of closer attention. This paper documents 
the methodology used to generate the hydrological metrics 
and indicators in the Aqueduct Water Risk Atlas (see Reig 
et al. 20131 for explanation of the Aqueduct framework 
and indicator selection). The data and maps are publicly 
available so that others may build off this effort.

1 INTRODUCTION
The availability and quality of freshwater to meet human 
needs has emerged as a top-tier global issue for environ-
ment and development,2 and the number of people af-
fected by water shortages has increased over time.3 Risks 
associated with water availability are further compounded 
by uncertainties in the distribution of future climatic and 
rainfall patterns. High and unsustainable water use forces 
competition or compromises that may lead to conflict 
among users.4 Water managers must balance the needs of 
growing populations, food irrigation requirements, and 
energy production, as well as threats to ecosystems and 
the services they provide. Furthermore, declining data col-
lection efforts and gauging station networks in the world’s 
rivers and lakes, and lack of consistent global metrics limit 
our ability to adequately address this problem.5 In an ef-
fort to fill this gap, the World Resources Institute’s Aque-
duct Water Risk Atlas (Aqueduct) compiles advancements 
in hydrological modeling, remotely sensed data, and pub-
lished datasets into a freely accessible online platform.

Aqueduct is a publicly available, global database and 
interactive tool that maps indicators of water-related risks 
for decisionmakers worldwide. Aqueduct uses a combina-
tion of geospatial and statistical models to translate global 
hydrological data into straightforward indicators and ag-
gregated scores that can inform a broad range of corpo-
rate, governmental, and civil society users. We grouped 12 
global indicators into a framework designed in response to 
the growing concerns from private and public sector actors 
around water scarcity, water quality, climate change, and 
increasing demand for freshwater. These indicators are in-
tended for comparative analysis across large geographies 
to identify regions or assets deserving of closer attention, 
and are not appropriate for local or site-specific analyses. 
This tool and the underlying data and methodology are 
open and available to serve public interests.

The 12 indicators in the Aqueduct framework were  
selected in three steps. First, we conducted a literature 
review of relevant water issues, existing water indica-
tors, and data sources. Then we evaluated potential data 
sources through a comparative analysis of their spatial and 
temporal coverage, granularity, relevance to water users, 
consistency, and credibility of sources. Final selection took 
place in consultation with industry, public-sector, and 
academic water experts. We sought to select indicators 
that covered the full breadth of water-related risks, while 
minimizing overlap and potential confusion resulting from 
an overabundance of indicators. A complete description 
of the framework and indicator selection can be found in 
Reig et al. (2013).6

Six of Aqueduct’s 12 indicators were developed by the 
World Resources Institute (WRI) and ISciences LLC, 
using a combination of publicly available datasets and 
modeling techniques. Sections 2 and 3 describe the model-
ing techniques and six resulting indicators, respectively. 
The remaining six indicators were adapted from existing 
published sources and are described in Section 4. Section 
5 describes the indicator scoring and aggregation meth-
odology. Finally, in Section 6 we discuss the results and 
implications of this work.

2 WATER USE AND SUPPLY MODELING
To create six of Aqueduct’s 12 indicators, we generated 
two metrics of spatially explicit water use and two met-
rics of spatially explicit supply (Figure 1). Use and supply 
are estimated at a hydrological catchment scale, which is 
required to spatially partition runoff and withdrawals and 
accumulate values downstream.

2.1 Catchments
For this exercise, we define catchments as areas of land 
that drain to a single outlet point. Catchments were 
extracted from the Global Drainage Basin Database 
(GDBD),7 which comprises 11,476 complete river basins8  
more finely resolved into 73,074 sub-basin polygons  
attributed with basin and Pfafstetter9 codes. To extract 
consistently sized catchments relative to the scale of our 
other variables, we subdivided the 11,476 complete GDBD 
basins using a recursive algorithm that splits basins above 
a threshold 100,000 km2 into the next lower level of sub-
basin polygons by Pfafstetter code. Once completed, we 
found the outlet of each resulting catchment by using the 
GDBD digital elevation model (DEM) to identify the low-
est point in the catchment and the adjacent downstream 
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Figure 1  |  Water Supply and Use Model Schematic
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catchment or sink. If we found multiple outlets for one 
catchment, we selected a single outlet at random. This 
situation occurs in GDBD because coastal interbasins,  
or intervening zones, were often combined forming a 
single coastal catchment between larger basins. There 
were also a few instances where GDBD aggregated delta 
areas of large river mouths that resulted in disjunct multi- 
part polygons; these were manually split and treated as 
separate catchments.

Splitting of the GDBD basins produced 15,006 catchments 
with a median and mean size of 2,282 and 8,804 km2, 
respectively. Basins along the coastlines and numerous 
inland sinks tend to be small while upland catchments are 
larger, leading to a distribution of basin size that is highly 
skewed to the right, with many smaller basins than larger 
ones (Figure 2).

2.2 Water Use
We estimated two metrics of spatially explicit water use: 
water withdrawal (the total amount of water abstracted 
from freshwater sources for agricultural, domestic, and 

industrial uses), and consumptive use (the portion of 
withdrawn water that evaporates or is incorporated into 
a product and is thus no longer available for downstream 
use). A third metric, non-consumptive use, was derived as 
withdrawal minus consumptive use.

2.2.1 Water Withdrawal

We used withdrawal data from the Food and Agriculture  
Organization of the United Nations (FAO) Aquastat 
database,10 which contains water use data collected from 
national governments as well as FAO’s internal estimates, 
or from Gleick et al.11 where FAO data was not available. 
Aquastat reports annual water use by country and sector 
(agriculture, domestic, and industrial, such that a coun-
try’s total annual water use is the sum of the three sectors) 
though reporting is inconsistent and varies by country.12 
The most recent year for which withdrawal data were  
available was 2010; however, because of inconsistencies 
in reporting, not all countries had data for this year. As 
detailed in the following subsections, we first projected  
the water withdrawals to a common year (2010) and, in 
order to use these values at the catchment scale, spatially 
disaggregated values from countries and re-aggregated 
them to catchments.

Figure 2  |  Aqueduct Catchments
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2.2.1.1 Baseline Withdrawal 2010

For countries with withdrawal data reported in Aquastat 
for 2008 or later (24 of 178 countries with sufficient data 
available), we used the reported value as the 2010 estimate. 
For countries without these data, we projected withdraw-
als for a baseline year of 2010 using equations that relate 

water use to country-level variables for which there were 
data in 2010 (see Table 1 for a list of the variables). These 
relationships were estimated using regression models. 
Because there is no clear consensus on the best regression 
modeling approach for cross-section time-series data such 
as these, projections were based on a combination of two 
regression models. Specifically, we used a mixed-effects 

Notes:
a. Food and Agriculture Organization of the United Nations, “AQUASTAT - FAO’s Information System on Water and Agriculture,” accessed June 05, 2013,  

http://www.fao.org/nr/water/aquastat/main/index.stm.
b. Peter Gleick et al., The World’s Water Volume 7 (Washington, DC: Island Press, 2011), http://worldwater.org/data.html.
c. GDP reported in constant 2000 US$ at purchasing parity power. World Bank, “World Development Indicators,” 2012, http://data.worldbank.org/data-catalog/world-development-indicators.
d. Food and Agriculture Organization of the United Nations, “FAOSTAT,” 2012, http://faostat3.fao.org/faostat-gateway/go/to/home/E.
e. Katharina Freydank and Stefan Siebert, Towards Mapping the Extent of Irrigation in the Last Century: Time Series of Irrigated Area Per Country, 2008,  

http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/5916.
f. U.S. Energy Information Administration (EIA), “International Energy Statistics,” 2012, http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm.

Table 1  | �Withdrawal Projection Variables by Sector

VARIABLE ABBREVIATION SOURCE

RESPONSE VARIABLE log(Water withdrawals) Y FAO Aquastata  
Pacific Instituteb

EXPLANATORY VARIABLES 
FOR ALL SECTORS

log(GDP) GDP World Bankc

log(Population) POP World Bank

Average annual precipitation PRCP FAO Aquastat

Total renewable water supply RWS FAO Aquastat

Sectoral water withdrawal ratio WWR Authors’ calculation (Y – log(RWS))

AGRICULTURAL ONLY log(Area Equipped for irrigation) IGAREA FAOSTATd

FAO Aquastat
Freydank and Sieberte

log(Agricultural land area) AGR World Bank

INDUSTRIAL ONLY log(CO
2
 emissions) CO

2
World Bank

log(Electricity, net generation) ELEC Energy Information Administrationf

log(Coal production) COAL Energy Information Administration

DOMESTIC ONLY Urban population (%) URB World Bank
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(or multilevel) model,13 and a fixed-effects model using the 
within-transform.14 Both models account for changes over 
time within a country, but they differ in the details of how 
the models are fit.

Table 1 lists response and explanatory variables for each 
sector. The response variable, water withdrawals, is based 
on data from FAO Aquastat or from Gleick et al. (1–3 
countries depending on sector). Explanatory variables were 
modified by filling temporal gaps in the data (less than 1 
percent of values), using single imputation via loess regres-
sion15 and simple linear regression. For country-variable 
combinations that are missing entirely (e.g., Myanmar 
GDP), we used multiple imputation based on the Amelia 
package in R,16 filling between 1 percent and 2 percent of 
country-variable combinations depending on the sector.

The two regression models were as follows. The mixed- 
effects estimator (henceforth ME) predicts water with-
drawals (Y) for country, i, and year, t, as a function of k 
explanatory variables (X), with coefficients (β) as well as 
separate intercepts (b0) and slopes (on the YEAR variable; 
bYEAR) for each country.

This approach explicitly partitions variation in water with-
drawals among between-country variation (the variation 
in the intercepts and slopes) and within-country variation 
(the residual variation). Considering the United States as 
an example, this model chooses variables and coefficients 
to account for both the country’s high agricultural with-
drawals relative to other countries, as well as its observed 
increase in withdrawals over time. Because this model 
estimates the change in withdrawals as well as the aver-
age level of withdrawals for a particular country, it can be 
used to estimate withdrawals even for countries that had 
no observed withdrawal data (as long as they have all the 
covariates). These models were fit using maximum likeli-
hood with the R package nlme.17

We used a second estimator, a fixed-effects approach 
model, using the within-transform (henceforth FE). The 
within-transform explicitly removes between-country 
variation by subtracting the country mean across all years 
from each variable:

While the ME approach can explain a high proportion of 
variation in water use (see below), one disadvantage is 
that the variable selection process can be dominated by 
variables that primarily explain between-country varia-
tion. In this application, modeling within-country varia-
tion is more relevant. We use the FE approach to force 
the variable selection process to focus only on explaining 
within-country variation. One shortcoming is that the FE 
approach cannot be used to estimate 2010 withdrawals for 
countries that have no reported withdrawal data, since the 
mean withdrawals are unknown and cannot be added back 
to the predicted yearly deviation. This applies to 5–9 coun-
tries, depending on sector, out of 178. For those countries, 
we used the ME estimators exclusively for prediction. Both 
approaches have strengths and weaknesses, and neither 
proved superior. Therefore, we used estimates derived 
from both models.

With each modeling approach, we fit a full model con-
taining all predictors, polynomial terms on key variables 
such as GDP, and selected interactions among up to three 
variables. We then reduced each model using backward 
elimination of variables by two different goodness-of-fit 
criteria: Akaike’s Information Criterion (AIC)18 and the 
Bayesian Information Criterion (BIC).19 These criteria mea-
sure goodness-of-fit of a model penalized by the number of 
parameters used; BIC penalizes additional variables more 
heavily, thus models selected by BIC tend to have fewer 
variables included. Although AIC is more widely used, 
some authors prefer BIC. Both AIC and BIC were used with 
each model (ME and FE) resulting in a total of four with-
drawal estimates for each country.

Overall, models predicted total variation across years and 
countries well, with total R2 between 0.94 and 0.99 (Table 
2; Figure 3). We used the average of the predicted 2010 
value from each of the resulting four models (ME-AIC, 
ME-BIC, FE-AIC, FE-BIC) as the final 2010 estimate for 
each sector.

Yit = ß0 + ß1X1it + ß2X2it + … + ßkXkit + b0i +bYEAR,iYEAR + εit

(Yit-Yi ) = ß1 (X1 it-X1 i) + ß2(X2it-X2i) + … + ßk(Xkit-Xki) + (εit- εi)
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SECTOR MODEL TOTAL VARIATION BETWEEN VARIATION WITHIN VARIATION

Agricultural ME – AIC 0.96 0.97 0.13

ME – BIC 0.96 0.97 0.12

FE – AIC 0.98 — 0.09

FE – BIC 0.98 — 0.07

Industrial ME – both 0.96 0.83 0.55

FE – AIC 0.94 — 0.16

FE – BIC 0.94 — 0.15

Domestic ME – AIC 0.99 0.93 0.72

ME – BIC 0.99 0.92 0.78

FE – both 0.98 — 0.49

Table 2  |  �Proportion of Variation Explained for Each Sector by Modeling Approach 

Figure 3  | �Observed vs. Modeled Values for Four 
Models of Agricultural Water Withdrawals
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2.2.1.2 Spatial Disaggregation

Once we attained temporally consistent country and sec-
tor specific withdrawal estimates, we downscaled these 
estimates from countries to catchments on a sector-by-
sector basis. For each sector, we selected k spatially explicit 
gridded datasets representative of that sector to maximize 
predictive power over country withdrawals (Table 3). We 
summed these gridded datasets from pixels (p) to countries 
(i), and fit zero-intercept regression estimators of 2010 
withdrawals (Y) (Table 4).

Xi= ∑p iXp
ˆ

ˆ ˆ ˆYl= ß1X1i + ß2X2i+ … + ßkXki+ εˆ

^
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This method guarantees that the total withdrawal for each 
country is conserved, that is, the sum of withdrawals for 
all pixels within a country is equal to the country with-
drawal. Withdrawals for each catchment (j) are then  
the sum of the estimated withdrawals for each pixel in  
the catchment.

Finally, we summed the three sectors (agricultural,  
domestic, and industrial) to create total withdrawal.

2.2.2 Consumptive Use

We estimated consumptive use by multiplying water with-
drawals by estimates of the portion of withdrawn water 
that is consumed per sector (agricultural, domestic, and 
industrial). Shiklomanov and Rodda estimate withdrawals 
(Ur) and consumptive use (Cr) for each sector in their 26 
“natural-economic” regions of the world.20 From this, we 
calculated consumptive use ratios of Cr / Ur, and gridded 
the 26 region polygons to match the pixel size of the  

We used the fitted country regression coefficients (β) to 
project withdrawals over each pixel (PP) and normal-
ized the projected withdrawals by dividing by the sum of 
projected withdrawals for all pixels within the containing 
country (i) to estimate withdrawals within each pixel (UP) 
for each sector.

SECTOR R2(p)

Agricultural 0.93 (<0.01)

Industrial 0.84 (<0.01)

Domestic 0.95 (<0.01)

Table 4  |  �Proportion of Country Withdrawal 
Variation Explained by Sector

Pp= ß1X1p + ß2X2p+ … + ßk Xkp

Up =
Pp

∑q ( i| i p)Pq

Uj = ∑p jUp

SECTOR VARIABLE ABBREVIATION RESOLUTION SOURCE

Agricultural Global Map of Irrigation Areas GMIA 5 arc-min Siebert et al.a

Industrial Nighttime Lights 2010 NTL 30 arc-sec NOAAb

Domestic Nighttime Lights 2010 NTL 30 arc-sec NOAA

Gridded Population of the World 2010 GPW 2.5 arc-min CIESINc

 Interaction NTL×GPW

Table 3  |  �Spatial Disaggregation Explanatory Variables by Sector 

Notes:
a. �Stefan Siebert et al., “Global Map of Irrigation Areas” (Johann Wolfgang Goethe University, Frankfurt am Main, Germany / Food and Agriculture Organization of the United Nations, Rome, 

Italy, 2007), http://www.fao.org/nr/water/aquastat/irrigationmap/index.stm.
b. �National Oceanographic and Atmospheric Administration (NOAA) and National Geophysical Data Center (NGDC), “Version 4 DMSP-OLS Nighttime Lights Time Series,” 2010, http://www.

ngdc.noaa.gov/dmsp/downloadV4composites.html.
c. Center for International Earth Science Information Network (CIESIN), Columbia University, United Nations Food and Agriculture Organization (FAO), and Centro Internacional de Agricultura 

Tropical (CAIT), “Gridded Population of the World Version 3 (GPWv3): Population Count Grid, Future Estimates,” 2005, http://sedac.ciesin.columbia.edu/gpw.
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sectoral water withdrawals. We then multiplied the gridded 
ratios by gridded withdrawals and summed by catchment 
to get consumptive use by sector per catchment (Cj).

The total consumptive use in each catchment is the sum 
of consumptive use for each sector. We derived non-
consumptive use by subtracting consumptive use from 
withdrawals. Withdrawals and especially consumptive use 
are largely dominated by irrigated agriculture (Figure 4).

2.3 Water Supply
We computed two metrics of annual water supply: total 
blue water (Bt) and available blue water (Ba). Total blue 
water approximates naturalized river discharge whereas 
available blue water is an estimate of surface water avail-
ability that removes water that is consumed upstream.

2.3.1 Runoff Model

We computed water supply from runoff (R), which is  
the amount of water that falls as precipitation (P) and is 
available to flow across the landscape after evapotrans-
piration (Et) and changes in soil moisture storage (ΔS) 
are accounted for (i.e., R = P – Et – ΔS). We extracted 
monthly runoff from the Global Land Data Assimilation 
System Version 2.0 1°×1° land surface model (GLDAS-2.0, 

1948–2010 monthly),21 which uses the Noah v.3.3 land sur-
face model and Princeton climate-forcing data to initialize 
meteorological variables such as radiation, temperature, 
and precipitation to observed conditions. Runoff from 
Noah treats Et from all cropland as dryland (nonirrigated). 
Therefore, Et from rain-fed agricultural is accounted for as 
an input to runoff, and any water withdrawn for irrigating 
crops is in excess of Et.

We selected this dataset after evaluating four models  
for accuracy, spatial resolution, and time coverage (see  
Section 8.2 for details). GLDAS-2 has been validated 
against gauged discharge and found to yield acceptable 
results for annual discharge (least bias), timing of peak 
flow, and intra- and inter-annual variability, and accurately 
simulated discharge in high-latitude, mid-latitude, and 
tropical rivers. For example, the percent error between 
global mean annual discharge between observed Global 
Runoff Data Centre (GRDC) and simulated by Noah 
(v.2.7.1) over a 63 year period was 3.5 percent.22

We calculated monthly runoff by catchment (Rj) by sum-
ming the subsurface (baseflow or lateral flows of shallow 
groundwater) and surface runoff components of the Noah 
land-surface model. Annual runoff is the sum of the runoff 
of 12 calendar months. We omitted the first two years 
(1948–49) to minimize error that might be introduced  
during the initial spinup period.

2.3.2 Flow Accumulation 

We estimated water supply using a catchment-to-catch-
ment flow accumulation approach, which aggregates water 
by catchment and transports it to the next downstream 

Cp = Up ; Cj = ∑p jCp

Cr

Ur )(

Figure 4  |  Area-Normalized Total Withdrawals and Consumptive Use, 2010 Estimates

Source: WRI Aqueduct. 
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catchment. For the calculation of our indicators, this 
catchment-to-catchment flow accumulation method has 
two advantages over conventional pixel-to-pixel flow accu-
mulation. First, it is better suited to our disaggregation of 
withdrawals data because it relaxes the requirement that 
withdrawals be located with spatial precision to the pixel 
level. Second, aggregating runoff by catchment allows wa-
ter to be freely transported within a catchment and elimi-
nates the problem that use or demand in one pixel cannot 
be supplied from a river in an adjacent pixel. This method 
assumes that all water in a catchment is effectively avail-
able to all users, and that no water from outside a catch-
ment is available to the catchment. Since the catchment-
to-catchment flow accumulation method does not include 
a dynamic temporal element (the water flows completely 
through the system from headwater to mouth in each 
time step without retention), it is only appropriate for 
time steps longer than it takes flow to transit a catchment. 
Given the relatively small spatial scale of our catchments 
and the monthly and yearly time steps used here, this is a 
valid assumption across most of the world except for areas 
below dams with large reservoir capacity.

We computed total blue water (Bt) for each catchment, j, 
by recursively summing runoff (R) from adjacent up-
stream catchments (the catchments that have j as their 
downstream outlet):

First-order catchments are defined as those without 
upstream catchments, so Bt in such catchments is equal 
to runoff. This equation was also used to flow accumulate 
other input values, for example, storage capacity and use, 
for several indicators (Section 3).

Available blue water (Ba) denotes the total amount of 
water available to a catchment accounting for upstream 
consumptive uses. We computed Ba as runoff plus all 
water flowing into the catchment from adjacent upstream 
catchments where consumptive use (C) is removed in up-
stream catchments prior to being counted (Figure 5):

First-order catchments have no upstream catchments, 
so Ba is simply runoff. In the event that consumptive use 
exceeds Ba, we assumed that any excess use is satisfied by 
alternative water sources (e.g. groundwater storage) and 
set the volume of water to be transferred to zero.

Although both Ba and Bt primarily measure surface water 
supply, the Noah land surface model also estimates shal-
low subsurface flow that may eventually reemerge on the 
surface (e.g., as springs) or contribute to the baseflow 
of rivers.23 Changes in existing water stores (e.g., deep 
groundwater and meltwater from glaciers) are not ac-
counted for in our water supply model. Interbasin trans-
fers of water and desalination are also unaccounted for 
because of insufficient global data, which may lead to 
underestimation of water supply particularly in coastal 
regions. The spatial pattern of Ba is very similar to that of 
Bt (Figure 6), though there are noticeable differences in 
regions with high consumptive use.

3 MODELED USE AND SUPPLY 
INDICATORS
From the modeled use and supply datasets we derived six 
indicators (Figure 7) that are described below.

Rj + ∑(u|outlet(u)=j)Btu, {u|outlet(u)=j} ≠ Ø

Rj, else
Btj = 

Rj + ∑(u|outlet(u)=j) max (0, Bau-Cu) , {u|outlet(u)=j} ≠ Ø

Rj, else
Baj = 

Figure 5  | �Schematic Diagram of Catchment-to-
Catchment Flow Accumulation

Note: �Available blue water (Ba) in catchment 3 is equal to runoff plus the sum of Ba  
minus consumptive use (C) for the adjacent upstream catchments. Since catchments 
1 and 2 have no upstream catchments, Ba is equal to runoff. Note that consumption  
is not counted against Ba in the current catchment but is counted in catchments 
further downstream. 
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Figure 6  |  Area-Normalized Mean Annual Total and Available Blue Water, 1950–2008

Source: WRI Aqueduct. 

Figure 7  |  Modeled Use and Supply Indicators

Source: WRI Aqueduct. 
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3.1 Baseline Water Stress
Baseline water stress (BWS) measures the ratio of total 
annual water withdrawal (Ut) to average annual available 
blue water (Ba), a commonly used indicator also known as 
relative water demand.24 It is important to note that most 
estimates of relative water demand do not account for 
upstream consumptive use as we do here. We used a long 
time series of supply (1950–2010) to reduce the effect of 
multi-year climate cycles and to allow us to ignore com-
plexities of short-term water storage (e.g., dams, flood-
plains) for which global operational data is nonexistent.25 
Baseline water stress thus measures chronic stress rather 
than drought stress.

We masked catchments with less than 0.012 m/m2/year  
of withdrawal and 0.03 m/m2/year of available blue  
water as “arid and low water use” since catchments with 
low values were more prone to error in our estimates of 
baseline water stress. Additionally, although current use in 
such catchments is low, any new withdrawals could easily 
push them into higher stress categories. We scored these 
areas as maximum risk for the purposes of aggregation 
(Section 5).

3.2 Inter-Annual Variability
Inter-annual variability (IAV) measures the variation in 
natural water supply between years and is the catchment-
specific coefficient of variation of Bt, calculated as the 
standard deviation of total blue water (Bt) divided by the 
mean of total blue water.

Inter-annual variability ignores human influences such 
as diversions and infrastructure, and focuses on natural 
variation in surface water supply. This overestimates per-
ceived variability in highly modified river basins.

3.3 Seasonal variability
Seasonal variability (SV) estimates within-year varia-
tion of water supply. We computed mean total blue water 
for each of the calendar months (Btm), and divided the 
standard deviation of the 12 monthly values by the overall 
mean monthly total blue water.

Seasonal variability ignores human influences such as di-
versions and infrastructure, but instead attempts to mea-
sure natural variation in surface water supply. While the 
runoff model captures short-term soil moisture storage, 
other forms of natural seasonal storage such as floodplains 
and wetlands are not captured and may lead to error in 
seasonal variability estimates.

3.4 Upstream Storage
Upstream storage (STOR) measures how many years 
of total blue water storage capacity exist upstream of or 
within the given catchment. We extracted storage capacity 
from the Global Reservoir and Dam (GRanD) database, 
which attempts to capture all large dams and reservoirs 
(those with capacity greater than 0.1 km3 across the 
world).26 Since reporting of dams and reservoirs varies by 
region, this indicator has greater influence in areas with 
more complete datasets of reservoirs and dams (e.g., the 

rBWS =
Ut2010

mean[1950,2010](Ba)

rIAV =
sd[1950,2010](Bt)

mean[1950,2010](Bt)

Btm = mean[1950,2010](Bti,m), m Є {jan…dec}

rSV =
sd[jan…dec](Btm)

mean[jan…dec](Btm)
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United States). We accumulated upstream and within-ba-
sin storage capacity (US) in the same way we computed Bt, 
then divided by mean total blue water. This indicator is in-
tended to counteract overestimates of variability in highly 
modified basins. We considered areas that are not covered 
by GRanD as having insufficient data. These catchments 
are coded as “no major dams” and excluded from scoring 
and aggregation.

Higher upstream storage indicates that a basin can with-
stand longer periods of deficits in available water with 
reservoir storage and also implies that risk of flooding may 
be lower. We did not attempt to account for the negative 
impacts of reservoir storage such as increased evaporation 
and changes to downstream flow regime.

3.5 Return Flow Ratio
Return flow ratio (RFR) measures the ratio of non-con-
sumptive use upstream and within the given catchment 
relative to the mean available blue water. We accumulated 
upstream and within-basin non-consumptive use (URF) in 
the same way we computed Bt. We then divided by mean 
available blue water.

This estimates the percent of available blue water that 
has been previously used and discharged, and it indicates 
reliance on water treatment infrastructure and natural 
features such as buffers and wetlands to maintain water 
quality, based on the assumption that water use degrades 

downstream water quality. We did not attempt to capture 
the effects of human or natural water treatment, nor did 
we differentiate between types of water uses to estimate 
pollutant loads.

3.6 Upstream Protected Land
Upstream protected land (PROT) measures the propor-
tion of total blue water that originated from protected 
areas. We extracted protected areas from the World 
Database on Protected Areas,27 excluding IUCN category 
V protected areas,28 as well as a large number of unclassi-
fied lands, breeding centers, municipal parks, cultural and 
historic sites, and exclusively marine areas, as these areas 
do not explicitly protect ecological services. We estimated 
mean total blue water using only runoff originating in pro-
tected lands (PBt) in the same way we computed Bt. We 
then divided by mean total blue water to derive indicator  
values for percentage of water sourced from upstream  
protected land.

Upstream protected land does not attempt to quantify the 
effectiveness of the protected area or account for external 
pressures on the watershed, which may have an outsize 
impact on the health of freshwater ecosystems.29

4 EXTERNALLY SOURCED INDICATORS
The remaining 6 of the 12 indicators used in Aqueduct 
were adapted from external sources. Of these 6, (Figure 
8), 4 were generated with minimal processing, and  
the remaining 2 are completely unmodified from their 
published form.

rRFR =
URF

mean[1950,2010](Ba)

rSTOR =
US

mean[1950,2010](Bt)

rPROT = mean[1950,2010](Bt)

mean[1950,2010](PBt)
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Figure 8  |  Externally Sourced Indicators

Source: WRI Aqueduct. 

4.1 Flood Occurrence
Flood occurrence (FO) measures the number of floods re-
corded in each catchment between 1985 and 2011. Report-
ed flood extent polygons were taken from the Global Flood 
Observatory.30 Polygons are estimated from remote sens-
ing, governmental, and media reports of affected regions. 
Extent polygons (E) are then spatially joined to catch-
ments (j) to count the total number of floods that may 
have affected each catchment over the recorded period.

The flood occurrence indicator differs from the preced-
ing hydrological indicators in several ways. First, floods 
are extreme events that are not captured in our long-term 
measurements. Second, this indicator counts actual ob-
servations rather than modeled occurrence, reflecting the 
influence of flood control infrastructure as well as events 
such as flash floods and coastal flooding, which are not 
easily captured by current hydrological models. Finally, 
this dataset’s method of flood extent estimation ignores 
local typography and may substantially overestimate the 
extent of flood impact.

rFO, j = count ({E|E  j ≠ Ø})
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4.2 Drought Severity
Drought severity (DRO) measures the mean severity of 
drought events from 1901 to 2008 as recorded in a mod-
eled 1° × 1° gridded data set by Sheffield and Wood.31 To 
produce this dataset, they generated a monthly soil mois-
ture hydrograph for each grid cell, and defined drought 
runs as continuous periods in which soil moisture falls 
under the 20th percentile of the monthly hydrograph 
(q(Θ)<20%). Severity (S) of a drought run beginning at 
time, ti, is the length (D) times the intensity (I) of the 
drought, with the length measured in months and inten-
sity equal to the average number of points by which soil 
moisture falls beneath the 20th percentile.

We resampled the gridded mean severity dataset and aver-
aged it across our hydrological catchments.
 

By definition, all regions of the world experience some 
form of drought 20 percent of the time. The drought 
severity indicator emphasizes those regions where soil 
moisture deficits are longer and drier, thereby making 
them harder to adapt to and mitigate. Regions that experi-
ence decadal or multidecadal variations in precipitation 
are more likely to fall into this category.

4.3 Groundwater Stress
Groundwater stress (GW) measures the ratio of ground-
water withdrawal relative to its sustainable recharge  
rate over a given aquifer. Gleeson et al. define ground- 
water footprint (GF) “as A[C/(R – E)] where C, R, and E 
are respectively the area-averaged annual abstraction  
of groundwater, recharge rate, and the groundwater  
contribution to environmental stream flow,” estimated at 
a 1° gridded resolution, and A “is the areal extent of any 
region of interest where C, R, and E can be defined.”32 
Groundwater stress is groundwater footprint divided by 
aquifer area.

 

Gleeson et al. only report values for major known aquifers, 
excluding areas with local, shallow, or complex groundwa-
ter systems, as well as areas with a recharge rate less than 
2 mm/year. We excluded areas without reported values 
from scoring and aggregation. Groundwater stress esti-
mates the sustainability of groundwater withdrawals but 
cannot predict the total volume of water stored in aquifers.

4.4 Media Coverage
Media coverage (MC) measures the number of news 
articles about water issues in a country relative to the total 
number of articles about the country. We used Google 
News to search a string of keywords including “water 
shortage” or “water pollution,” and a country—for ex-
ample, “water shortage + Egypt”—limiting results to the 
10 years from January 1, 2002 to December 31, 2011.33 For 
each country, we summed the number of articles on water 
shortage and water pollution (W) and divided by the total 
number of articles on any topic found when searching for 
only the country name (T).

Media coverage estimates the relative importance of water 
issues in the English-language media. Areas that have 
been dominated by conflict (e.g., Iraq) or other high- 
profile issues (e.g., Venezuela) appear lower in value  
despite apparent water issues.

4.5 Access to Water
Access to water (WC) measures the proportion of popula-
tion without access to improved drinking water sources 
by country and estimates the coverage of drinking water 
infrastructure.
 

This indicator is taken from the WHO/UNICEF Joint 
Monitoring Programme (JMP) for Water Supply and Sani-
tation 2010 dataset, which defines an improved drinking 
water source as “one that, by nature of its construction 
or through active intervention, is protected from outside 
contamination.”34 The JMP aggregates this dataset from 
nationwide health surveys.

S =∑t=ti     
20% - q(Θ)t i.e. S =I x Dt+D-1

rDRO, j =∑p j mean(S)p

rGW =
GF
A

rMC =
W
T

rWC =
PTOTAL-PACCESS

PTOTAL
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4.6 Threatened Amphibians
Threatened amphibians (AMPH) measures the percent-
age of amphibian species classified by the International 
Union for Conservation of Nature (IUCN) as threatened in 
each catchment. We joined the IUCN Red List of Threat-
ened Species for amphibians with an IUCN database on 
estimated amphibian species ranges, making several name 
corrections in joining the data. We then spatially joined 
the estimated ranges (R) with the hydrological catchments 
to count the number of threatened and nonthreatened am-
phibian species. We excluded catchments with fewer than 
two extant species from aggregation and scoring.

The threatened amphibians indicator excludes species  
that are extinct or locally extirpated, and thus estimates 
current levels of vulnerability rather than total degrada-
tion. Furthermore, this indicator does not attempt to  
differentiate among the causes of species decline.

5 INDICATOR SCORING AND 
AGGREGATION
After computing raw values of indicators, we normalized 
indicators for display and aggregation. We used a  
linear weighted aggregation approach, and displayed 
indicators on an online interactive platform to enable 
dynamic aggregation.

5.1 Thresholds and Normalization
The first step in aggregation is to place all indicators on a 
comparable scale. We normalized indicators over a set of 
thresholds, which were chosen to divide indicators into 
five categories. For each indicator, we determined thresh-
olds using existing literature, the range and distribution 
of indicator values, and expert judgment. For example, 
for baseline water stress, our thresholds reflect thresholds 
used by other withdrawal-to-availability indicators.35

We then mapped raw values over the thresholds using 
continuous functions, normalizing the indicators to scores 
between 0 and 5, such that scores less than or equal to 1 
correspond with the lowest category, and scores greater 
than 4 correspond with the highest category (Figure 9). 
The normalization functions vary by indicator but gener-
ally follow either a simple linear or a logarithmic form 
(Table 5).

The threshold method of indicator normalization has 
several advantages and one notable disadvantage. The 
foremost advantage is that it creates clear categories, and 
enables scores to be matched to guidelines. Relative to 
purely statistical methods of normalization, the threshold 
method is independent of the distribution of data, and 
thus is unaffected by extreme values, allowing for com-
parison across different samples or new datasets.

However, the scoring of indicators, whether based on  
established guidelines or statistical distributions, is  
subjective. By defining thresholds, we assign meaning  
to specific indicator values. To maintain transparency 
in the process, we display the relationship between raw 
values and categories and enable users to access the raw 
indicator values.

count (threatened (R))

count (R)
rAMPH, j = , for (R|R  j ≠ Ø})

Figure 9  | �Example Indicator Raw Values Normalized 
Over Five Categories to Scores between  
0 and 5
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INDICATOR FUNCTION LOWEST CATEGORY  
(x ≤ 1)

HIGHEST CATEGORY  
(x > 4)

BWS r ≤ 10% r > 80%

IAV r ≤ 0.25 r > 1

SV r ≤ 1/3 r > 11/3

STOR r ≥ 1 r < 0.125

RFR r ≤ 10% r > 80%

PROT r ≥ 40% r < 5%

FO r ≤ 1 r > 27

DRO r ≤ 20 r > 50

GW r ≤ 1 r > 20

MC r ≤ 0.05% r > 0.4%

WC r ≤ 2.5% r > 20%

AMPH r = 0% r > 35%

Table 5  |  �Indicator Normalization Functions from Raw Indicator Values, r, to Scores, x. 

Note: �BWS = Baseline water stress,  IAV = Inter-annual variability,  SV = Seasonal variability, STOR = Upstream storage, RFR = Return flow ratio, PROT = Upstream protected land, 
FO = Flood occurrence, DRO = Drought severity, GW = Groundwater stress, MC = Media coverage,  WC = Access to water, AMPH = Threatened amphibians.

x = max (0, min 5, +1 )
ln(r) – ln(0.1) )( ln(2)

x = max (0, min 5, )
r )( 0.25

x = max (0, min 5, )
r )( 1/3

x = max (0, min 5, +1 )
ln(r) – ln(0.1) )( – ln(2)

x = max (0, min 5, +1 )
ln(r) – ln(0.1) )( ln(2)

x = max (0, min 5, +1 )
ln(r) – ln(0.4) )( – ln(2)

x = max (0, min 5, +1 )
ln(r) – ln(1) )( ln(3)

x = max (0, min 5, )
r — 10 )( 10

min , rGW ≥ 5

, rGW < 3.5

5, +1 )
ln(r) – ln(5) )( ln(2)

max

x = 

0, +1 )
ln(r+1.5) – ln(5) )( ln(2)

x = max (0, min 5, +1 )
ln(r) – ln(0.0005) )( ln(2)

x = max (0, min 5, +1 )
ln(r) – ln(0.025) )( ln(2)

x = max (0, min 5, )
ln(r + 0.05) )( ln(2)
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5.2 Weighting
Exposure to water-related risks varies with the charac-
teristics of water users. To obtain aggregated water-risk 
scores, we allow users to modify the weight of each indica-
tor to match their exposure to the different aspects of 
water risk. We expose five possible weights, or descriptors 
of importance, on a base two exponential scale, which is 
preferred over a linear scale because of the human ten-
dency to categorize intensity by orders of magnitude of 
difference.36 Users can also exclude indicators completely 
from aggregation.

To determine a default set of indicator weights, we used 
input from six staff water experts following the principles 
of the Delphi technique. This technique uses a series of 
intensive questionnaires interspersed with controlled 
opinion feedback to obtain the most reliable consensus of 
opinion from a group of experts.37 The Delphi technique 
is intended for use in judgment situations, in which pure 
model-based statistical methods are not practical or pos-
sible because of the lack of appropriate historical data, and 
thus where some form of human judgment input is neces-
sary.38 The lack of consistent information on exposure to 
water risks and the subjective nature of indicator weights 
made this technique an ideal fit.

Additionally, we developed pre-set weighting schemes  
for nine industry sectors based on information provided in 
corporate water disclosure reports39 and input from  
industry experts to reflect the particular risks and chal-
lenges faced by each water-intensive sector (Figure 10). 
For each sector, we modified the default indicator weights 
based on the relative importance of each indicator to the 
sector based on information disclosed by companies on 
their exposure to, and losses from, water-related risks.  
To validate the industry-sector pre-set weighting schemes, 
we presented preliminary weighting schemes to industry 
representatives from the nine sectors and solicited  
feedback on the relative importance of each indicator  
for their sector.

5.3 Indicator Aggregation
Finally, to obtain estimates of overall water risk, the 
Aqueduct tool combines individual indicator scores into 
aggregated scores using linear aggregation. Specifically, 
for any set of indicators, I, it computes a weighted aver-
age (a) for each area (j) as the sum of the indicator scores 
(x) times their weights (w), divided by the sum of all the 
weights. Indicators in areas for which there are no data are 
excluded from the weighted average for those areas.

∑xijwi

∑wi

aj = , (i I|xij ≠ NULL)

Figure 10  |  Weighting Schemes
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Figure 11  |  Overall Water Risk Default Weighting

Source: WRI Aqueduct. 

Since the weighted average pulls all indicator values 
toward the mean, we rescaled the aggregated scores to 
extend through the full range of values (0–5) to generate  
a final displayed score (s).
 

This approach more clearly communicates the full range 
of relative risk values given the user’s chosen weights.

6 DISCUSSION
The Aqueduct Water Risk Atlas provides the means  
to compare spatial variations in potential water issues 
across the globe. The composite overall water risk index 
(Figure 11) highlights regions of high risk and provides an 
entry point for users into the database, while individual 

aj- min (a)

max (a)- min (a)
sj = 5 )(

indicators more clearly measure specific water resource 
characteristics. Moreover, by identifying regions that 
face the highest risks, Aqueduct may be used to prioritize 
where more detailed local-scale analysis is merited.

These global indicators are best suited for comparative 
analyses across large geographies to identify regions or 
assets deserving of closer attention, and are not appro-
priate for catchment or site-specific analyses. Indeed, 
global-scale indices such as this face significant limitations 
in their ability to accurately and objectively capture most 
aspects of the underlying phenomena at specific places.

At the composite index level, the selection of aggregation 
methods is an inherently subjective process that creates 
value by simplifying complex phenomena. Although we 
make every effort to create a robust and objective frame-
work, the academic and professional discourse remains 
without a single best way to combine and compare diverse 
metrics into a composite index. Therefore, results, to some 
extent, reflect the judgment of the authors and expert 
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advisors. However rigorous the results produced, this exer-
cise inevitably runs up against the limits of describing the 
complexity of water risks with a single number.

Furthermore, validation of the composite index of water 
risk is a challenge because of the difficulty of collecting 
risk-event data. Consistently measured, geographically 
explicit data on economic or environmental losses caused 
by water resource constraints would greatly aid in this 
exercise. Instead, we rely heavily on the robustness of 
input data and methods as well as expert review panels to 
ensure a meaningful product.

Other possible water-related risks also escape our index. 
The complex and qualitative nature of regulatory and 
reputational drivers of risk complicates researchers’ ability 
to create useful metrics. Water policies and regulations 
can limit or redistribute the use of water in ways for which 
we are unable to account.

Barriers, such as inconsistent availability of data, as well 
as the unwillingness or lack of capacity for governments 
to collect and share water data, hamper the construc-
tion of consistent global water information.40 Water 

infrastructure is likewise undermeasured, as there are no 
published global datasets of major water transfer projects, 
infrastructural losses, or reservoir evaporation. Similarly, 
methods for evaluating freshwater ecosystem services 
such as flood attenuation and pollution control at the 
global scale remain underdeveloped. While improvements 
in modeling methodologies could overcome some of these 
barriers, collection and sharing of data by national govern-
ments is essential to the creation of accurate global water 
information.

Nothing can fully replace locally calibrated information on 
water infrastructure, policy, and management practices. 
Nonetheless, Aqueduct’s global metrics and associated 
maps provide an easily accessible entry point to evaluating 
water risks, enabling audiences to better understand the 
relative importance of major water resource constraints 
among specific geographies, regardless of expertise. The 
World Resources Institute plans to continue to improve 
the Aqueduct indicator and aggregation methodology. 
We welcome comments and suggestions from interested 
parties. For more information on the Aqueduct Water Risk 
Atlas please visit www.wri.org/aqueduct.



Aqueduct Global Maps 2.1

WORKING PAPER  |  April 2015  |  21

ENDNOTES
1.	 Paul Reig, Tien Shiao, and Francis Gassert, “Aqueduct Water Risk Frame-

work,” Working Paper (Washington, DC: World Resources Institute, 
January 2013), http://www.wri.org/publication/aqueduct-water-risk-
framework.

2.	 Geoff Dabelko and Meaghan Parker, Seven Ways 7 Billion People  
Affect the Environment and Security (Washington, DC: Woodrow Wilson 
Center for Scholars, 2013), http://www.newsecuritybeat.org/2013/01/
ways-billion-people-affect-environment-security-policy-brief/; World 
Economic Forum, Global Risks 2013, Eighth Edition (Cologny/Geneva, 
Switzerland, 2013), http://www3.weforum.org/docs/WEF_GlobalRisks_
Report_2013.pdf.

3.	 Matti Kummu et al., “Is Physical Water Scarcity a New Phenomenon? 
Global Assessment of Water Shortage over the Last Two Millennia,” 
Environmental Research Letters 5, no. 3 (July 16, 2010): 034006, 
doi:10.1088/1748-9326/5/3/034006.

4.	 C.J. Vorosmarty et al., “Global Threats to Human Water Security and 
River Biodiversity,” Nature 467, no. 7315 (2010): 555–61, http://www.
nature.com/nature/journal/v467/n7315/full/nature09440.html#/methods.

5.	 Caroline A. Sullivan, “Quantifying Water Vulnerability: A Multi-Dimen-
sional Approach,” Stochastic Environmental Research and Risk Assess-
ment 25, no. 4 (2011): 627–40, doi:10.1007/s00477-010-0426-8.

6.	 Paul Reig, et al. “Aqueduct Water Risk Framework,” 2013.
7.	 Yuji Masutomi et al., “Development of Highly Accurate Global Polygonal 

Drainage Basin Data,” Hydrological Processes 23, no. 4 (February 15, 
2009): 572–584, doi:10.1002/hyp.7186.

8.	 Catchment and basin are often used synonymously. However in this 
paper, we use basin to refer to the entire area of land that drains to 
an ocean or closed inland water body (e.g. the Nile River Basin), and 
catchment as a more general term that can refer to portions of a larger 
river basin that share a common outlet (e.g. portions of the main stem or 
tributaries of a large river).

9.	 Otto Pfafstetter, “Classification of hydrographic basins: coding meth-
odology,” unpublished manuscript, Departamento Nacional de Obras 
de Saneamento, 1989: 1-2; K.L Verdin and J.P Verdin, “A Topological 
System for Delineation and Codification of the Earth’s River Basins,” 
Journal of Hydrology 218, no. 1–2 (May 1999): 1–12, doi:10.1016/
S0022-1694(99)00011-6. 

10.	Food and Agriculture Organization of the United Nations, “AQUASTAT - 
FAO’s Information System on Water and Agriculture.”

11.	Peter Gleick et al., The World’s Water Volume 7 (Washington, DC: Island 
Press, 2011), http://worldwater.org/data.html.

12.	The primary differentiating factor between domestic (i.e. urban) and  
industrial or agricultural withdrawals is that domestic withdrawals 
are supplied by a public distribution system while the others are not. 
Agricultural withdrawals are the amount above and beyond rain-fed agri-
culture (the effect of which is accounted for in land surface modeling).  
See: A Kohli, K Frenken, and C Spottorno, Disambiguation of Water 
Statistics, May 2012.

13.	Judith D. Singer and John B. Willett, Applied Longitudinal Data Analysis 
(New York: Oxford University Press, 2003); Jose C. Pinheiro and Douglas 
M. Bates, Mixed-Effects Models in S and S-Plus (New York: Springer 
Verlag, 2000).

14.	Badi H. Baltagi, Econometric Analysis of Panel Data, 4th ed. (Chichester: 
John Wiley & Sons, 2008). 

15.	W. S. Cleveland, E. Grosse, and W. M. Shyu, “Local Regression Models,” 
in Statistical Models in S, edited by J.M. Chambers and T. J. Hastie 
(Wadsworth and Brooks / Cole, 1992).

16.	James Honaker and Gary King, “What to Do About Missing Values in 
Time-Series Cross-Section Data,” American Journal of Political Science 
54, no. 2 (April 2010): 561–81, doi:10.1111/j.1540-5907.2010.00447.x.

17.	Jose C. Pinheiro et al., “Nlme: Linear and Nonlinear Mixed Effects Mod-
els. R Package Version 3.1-108,” 2013, http://cran.r-project.org/web/
packages/nlme/nlme.pdf.

18.	H. Akaike, “A New Look at the Statistical Model Identification,” 
IEEE Transactions on Automatic Control 19, no. 6 (1974): 716–23, 
doi:10.1109/TAC.1974.1100705.

19.	G. E. Schwarz, “Estimating the Dimension of a Model,” Annals of Statis-
tics 6, no. 2 (1978): 461–64, doi:10.1214/aos/1176344136.

20.	  I. A. Shiklomanov and John C. Rodda, eds., World Water Resources at 
the Beginning of the Twenty-First Century (Cambridge University Press, 
2004).

21.	M. Rodell et al., “The Global Land Data Assimilation System,” Bulletin of 
the American Meteorological Society 85, no. 3 (2004): 381–94, http://
dx.doi.org/10.1175/BAMS-85-3-381.

22.	Benjamin F. Zaitchik, Matthew Rodell, and Francisco Olivera, “Evalua-
tion of the Global Land Data Assimilation System Using Global River 
Discharge Data and a Source-to-Sink Routing Scheme,” Water Resources 
Research 46, no. 6 (2010): 1–17, doi:10.1029/2009WR007811.

23.	NCAR Research Applications Laboratory, “Land Surface Modeling: The 
Community Noah Land Surface Model (LSM),” https://www.rap.ucar.edu/
research/land/technology/lsm.php, accessed January 11, 2014.

24.	Amber Brown and Marty D Matlock, “A Review of Water Scarcity Indices 
and Methodologies,” white paper (The Sustainability Consortium, 2011), 
http://www.sustainabilityconsortium.org/wp-content/themes/sustain-
ability/assets/pdf/whitepapers/2011_Brown_Matlock_Water-Availability-
Assessment-Indices-and-Methodologies-Lit-Review.pdf.

25.	Some authors have attempted to account for dams and other stor-
age features using basic operational rules. See, for example: Marc F. 
P. Bierkens, L. P. H. van Beek, and Yoshihide Wada, “Global Monthly 
Water Stress: 1. Water Balance and Water Availability,” Water Resources 
Research, 2011, doi:10.1029/2010WR009791; L. P. H. van Beek et al., 
“Global Monthly Water Stress: 2. Water Demand and Severity of Water 
Stress,” Water Resources Research, 2011, doi:10.1029/2010WR009792.

26.	B. Lehner et al., “High-Resolution Mapping of the World’s Reservoirs and 
Dams for Sustainable River-Flow Management,” Frontiers in Ecology and 
the Environment 9, no. 9 (May 2011): 494–502, doi:10.1890/100125.

27.	 International Union for Conservation of Nature (IUCN) and United Na-
tions Environment Programme World Conservation Monitoring Centre 
(UNEP-WCMC), “The World Database on Protected Areas,” June 2012, 
http://protectedplanet.net/.



22  |  

28.	Category V protected areas are defined as “areas where the interaction of 
people and nature over time has produced an area of distinct character 
with significant ecological, biological, cultural and scenic value and 
where safeguarding the integrity of this interaction is vital to protecting 
and sustaining the area and its associated nature conservation and other 
values.” Category V is one of the more flexible categories, allowing for 
historical and contemporary development such as ecotourism. Nigel 
Dudley, ed., Guidelines for Applying Protected Area Management Cat-
egories (Gland, Switzerland: IUCN, 2008), doi:10.2305/IUCN.CH.2008.
PAPS.2.en.

29.	Robin Abell, J. David Allan, and Bernhard Lehner, “Unlocking the Poten-
tial of Protected Areas for Freshwaters,” Biological Conservation, 2007, 
doi:10.1016/j.biocon.2006.08.017.

30.	G.R. Brakenridge, “Global Active Archive of Large Flood Events”, Dart-
mouth Flood Observatory, University of Colorado, http://floodobserva-
tory.colorado.edu/Archives/index.html.

31.	Justin Sheffield and Eric F Wood, “Projected Changes in Drought Occur-
rence Under Future Global Warming from Multi-Model, Multi-Scenario, 
IPCC AR4 Simulations,” Climate Dynamics 31 (2008): 79–105, http://
link.springer.com/article/10.1007/s00382-007-0340-z.

32.	Tom Gleeson et al., “Water Balance of Global Aquifers Revealed by 
Groundwater Footprint,” Nature 488, no. 7410 (2012): 197–200, 
doi:10.1038/nature11295.

33.	World Health Organization (WHO) and the United Nations Children’s 
Fund (UNICEF), “WHO / UNICEF Joint Monitoring Programme (JMP) for 
Water Supply and Sanitation,” 2012, www.wssinfo.org.

34.	 International Union for Conservation of Nature (IUCN), “The IUCN Red 
List of Threatened Species,” 2010, http://www.iucnredlist.org/technical-
documents/spatial-data#amphibians.

35.	Charles J. Vörösmarty et al., “Global Water Resources: Vulnerabil-
ity from Climate Change and Population Growth,” Science 289, no. 
5477 (2000): 284–88, http://www.sciencemag.org/cgi/doi/10.1126/
science.289.5477.284; United Nations Commission on Sustainable 
Development (UNCSD), Comprehensive Assessment of the Freshwater 
Resources of the World (New York, 1997), http://www.un.org/ga/search/
view_doc.asp?symbol=E/CN.17/1997/9&Lang=E.

36.	T. Evangelos, Multi-criteria Decision Making Methods: A Comparative 
Study, (Dordrecht: Kluwer Academic Publishers), 2000).

37.	Gene Rowe and George Wright, “The Delphi Technique as a Forecasting 
Tool: Issues and Analysis,” International Journal of Forecasting 15, no. 4 
(October 1999): 353–75, http://www.sciencedirect.com/science/article/
pii/S0169207099000187.

38.	Norman Dalkey and Olaf Helmer, “An Experimental Application of the 
DELPHI Method to the Use of Experts,” Management Science  9 , no. 3  
(April 01, 1963): 458–67, doi:10.1287/mnsc.9.3.458.

39.	Carbon Disclosure Project, Collective Responses to Rising Water  
Challenges, 2012, https://www.cdproject.net/CDPResults/CDP-Water-
Disclosure-Global-Report-2012.pdf; Carbon Disclosure Project, Raising 
Corporate Awareness of Global Water Issues, 2011, https://www.cdpro-
ject.net/CDPResults/CDP-Water-Disclosure-Global-Report-2011.pdf; 
Berkley Adrio, Clearing the Waters: A Review of Corporate Water Risk 
Disclosure in SEC Filings, June 2012, http://www.ceres.org/resources/
reports/clearing-the-waters-a-review-of-corporate-water-risk-disclo-
sure-in-sec-filings/view. IFC-ESAT (2005) “Sector Fact Sheet: Textiles 
and Apparel,” available at: http://firstforsustainability.org/documents/
factsheet_textiles.pdf. UBS Investment Research (2012) Q Series: Water 
Risk to Businesses.

40.	Sullivan, Caroline A, “Quantifying Water Vulnerability: A Multi-Dimen-
sional Approach,” Stochastic Environmental Research and Risk Assess-
ment 25, no. 4 (2011): 627–640, doi:10.1007/s00477-010-0426-8.

41.	 ISciences L.L.C., “Freshwater Sustainability Analyses: Interpretive  
Guidelines,” November 2011, http://docs.wri.org/aqueduct/freshwater_ 
sustainability_analyses.pdf. 

42.	B. M. Fekete, C. J. Vörösmarty, and W. Grabs, “High-Resolution Fields 
of Global Runoff Combining Observed River Discharge and Simulated 
Water Balances,” Global Biogeochemical Cycles 16, no. 3 (2002): 10–15, 
doi:10.1029/1999GB001254.

43.	 Ibid.; D.R. Legates and C.J. Willmott. Mean Seasonal and Spatial Vari-
ability in Gauge-Corrected, Global Precipitation,” Journal of Climatology 
10 (1990):111–27; D.R. Legates and C.J. Willmott, “Mean Seasonal 
and Spatial Variability in Global Air Temperature,” Theoretical Applied 
Climatology 41(1990):11–21.

44.	Zaitchik, Rodell, and Olivera, “Evaluation of the Global Land Data  
Assimilation System Using Global River Discharge Data and a Source-to-
Sink Routing Scheme.”

45.	Reichle, Rolf H., Randal D. Koster, Gabriëlle J. M. De Lannoy, Barton a. 
Forman, Qing Liu, Sarith P. P. Mahanama, and Ally Touré. “Assessment 
and Enhancement of MERRA Land Surface Hydrology Estimates.” Journal 
of Climate 24, no. 24 (December 2011): 6322–6338. doi:10.1175/JCLI-
D-10-05033.1.

46.	  NASA Goddard Earth Sciences Data and Information Services Center, 
“GLDAS Version 2 (GLDAS-2) Data Have Been Released,” accessed May 
22, 2013, http://disc.sci.gsfc.nasa.gov/gesNews/gldas_2_data_release.

47.	Zaitchik, Rodell, and Olivera, “Evaluation of the Global Land Data As-
similation System Using Global River Discharge Data and a Source-to-
Sink Routing Scheme.” 



Aqueduct Global Maps 2.1

WORKING PAPER  |  April 2015  |  23

APPENDIX A  SUPPLEMENTARY INFORMATION
A1 2010 Withdrawal Projection Model Supplementary Figures

VARIABLE ME-AIC ME-BIC FE-AIC AND BIC

Intercept -8.1 ± 0.97 -7.9 ± 0.59

YEAR 0.005 ± 0.0017 0.005 ± 0.0017

POP 1 ± 0.16 1.22 ± 0.098 0.02 ± 0.42

GDP 0.1 ± 0.16 -0.1 ± 0.089 -0.5 ± 0.26

WWR 0.4 ± 0.27 0.5 ± 0.25

PRCP 0.00012 ± 0.00003 0.00013 ± 0.00003

URB 1 ± 1.1 0.8 ± 0.11 5 ± 1.7

POP:WWR 0.16 ± 0.042 0.2 ± 0.038

GDP:WWR -0.13 ± 0.038 -0.15 ± 0.033

POP:URB 0.4 ± 0.17

GDP:URB -0.2 ± 0.17 -0.4 ± 0.17

POP:GDP 0.11 ± 0.038

POP:PRCP 0.0005 ± 0.00013

Table A1a  |  �Coefficients (± standard error) for Four Models of Domestic Water Withdrawals  

Source: WRI Aqueduct.
Note: Mixed effects models use variable selection based on AIC and BIC, and fixed effects models are based on AIC and BIC. Variable abbreviations as in Table 1.
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VARIABLE ME-AIC AND BIC FE-AIC FE-BIC

Intercept -17 ± 5

YEAR 0.014 ± 0.0049

ELEC -3 ± 1.3

GDP 1.3 ± 0.49 -48.3 ± 24 -0.5 ± 0.45

GDP2 4 ± 2.2

GDP3 -0.13 ± 0.067

WWR 0.27 ± 0.051

CO2 3 ± 1.5

POP 0.6 ± 0.095

COAL 0.06 ± 0.018

GDP:ELEC 0.3 ± 0.13

GDP:CO2
-0.3 ± 0.15

GDP:WWR -0.8 ± 0.2 -0.8 ± 0.18

Table A1b |  �Coefficients (± standard error) for Four Models of Industrial Water Withdrawals   

Source: WRI Aqueduct project.
Note: Mixed effects models use variable selection based on AIC and BIC, and fixed effects models are based on AIC and BIC. Variable abbreviations as in Table 1.
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VARIABLE ME-AIC ME-BIC FE-AIC FE-BIC

Intercept -2 ± 1.5 -2.8 ± 0.66

IGAREA 0.5 ± 0.36 0.53 ± 0.056 0.2 ± 0.16 0.1 ± 0.15

GDP -0.2 ± 0.15 -0.16 ± 0.074 2 ± 1.2 -0.03 ± 0.094

GDP2 -0.16 ± 0.096

AGR 0.4 ± 0.047 0.38 ± 0.046 -0.4 ± 0.28

POP 0.22 ± 0.084 0.22 ± 0.083 -2 ± 1.6 0.7 ± 0.21

PRCP 0.00045 ± 0.00004 0.00044 ± 0.00004

WWR 1 ± 0.49 1.3 ± 0.28

POP:GDP 0.2 ± 0.15

IGAREA:GDP 0.004 ± 0.035

IGAREA:WWR 0.2 ± 0.14 0.05 ± 0.019 0.32 ± 0.098 0.25 ± 0.093

GDP:WWR -0.05 ± 0.051 -0.08 ± 0.031 -0.15 ± 0.093

GDP:WWR:IGAREA -0.02 ± 0.014

IGAREA:PRCP 0.0005 ± 0.00017 0.0005 ± 0.00017

GDP:PRCP -0.0002 ± 0.00015

Table A1c |  �Coefficients (± standard error) for Four Models of Agricultural Water Withdrawals   

Source: WRI Aqueduct project.
Note: Mixed effects models use variable selection based on AIC and BIC, and fixed effects models are based on AIC and BIC. Variable abbreviations as in Table 1.
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Figure A1a |  �Domestic Withdrawals for the 30 Countries with the Highest Sectoral Water Use   

Source: WRI Aqueduct.
Note: �Countries are listed in decreasing order of water use. Note differences in the y-axis limits. Model fits are shown for each of the four estimated models (see section 2.2.2 for descriptions 

of the models) as well as the average of all four models (Avg) and the observed points (Obs).  
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Figure A1b |  �Industrial Withdrawals for the 30 Countries with the Highest Sectoral Water Use   

Source: WRI Aqueduct.
Note: �Countries are listed in decreasing order of water use. Note differences in the y-axis limits. Model fits are shown for each of the four estimated models (see section 2.2.2 for descriptions 

of the models) as well as the average of all four models (Avg) and the observed points (Obs).  
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Figure A1c |  �Agricultural Withdrawals for the 30 Countries with the Highest Sectoral Water Use 

Source: WRI Aqueduct.
Note: �Countries are listed in decreasing order of water use. Note differences in the y-axis limits. Model fits are shown for each of the four estimated models (see section 2.2.2 for descriptions 

of the models) as well as the average of all four models (Avg) and the observed points (Obs).  
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A2 Runoff Model Comparison
Water supply estimates in the previous iteration of Aqueduct water stress 
maps (developed by ISciences, L.L.C. for the Coca-Cola Company)41 were 
based on the University of New Hampshire Global Runoff Data Center (UNH-
GRDC) dataset.42 The UNH-GRDC dataset was developed specifically with 
the goal of maximizing the accuracy of runoff measurements, and includes 
extensive gauge data in its construction. Despite its accuracy, several aspects 
make it unsuitable for use here. 

First, the UNH-GRDC dataset uses climatologically averaged precipitation, 
temperature, and gauged river discharge data across approximately 40 years, 
so it cannot be used to estimate temporal variability. Additionally, the climatol-
ogy covers an unspecified time period, since the underlying data are based on 
inconsistent observed data over several decades ending no later than 1990.43 
Finally, because of an issue with an underlying equation in the water balance 
model, the UNH-GRDC dataset makes arid and semi-arid areas too dry. 
Nonetheless, because of its demonstrated accuracy over most of the rest of 
the world, we used this dataset as a reference against which to evaluate bias in 
selecting a runoff dataset. 

We evaluated three other datasets for runoff bias, spatial resolution, and tem-
poral extent (Table A2a), and assumed a climatological period of 1950–90 for 
the UNH-GRDC dataset for purposes of comparison. Note that, only GLDAS-2 
can be directly compared with UNH-GRDC because only it has an overlapping 
temporal extent. Therefore, GLDAS-2 was directly compared with UNH-GRDC, 
and the other two models were compared with GLDAS-2.

DATASET RESOLUTION 
(DEGREES) TEMPORAL EXTENT

UNH-GRDCa 0.5
1950-1990  

climate norm

GLDAS-2 Noahb 1.0 1948-2008

NCEP CFSR 
Noahc 0.3 1979-2010

MERRA-Landd 0.5 × 0.66 1980-present

Table A2a  |  �Evaluated Global Runoff Models for 
Annual Water Supply

Source: WRI Aqueduct.
Notes: �
a.  �D.R. Legates and C.J. Willmott. Mean Seasonal and Spatial Variability in Gauge-

Corrected, Global Precipitation,” Journal of Climatology 10 (1990):111–27;. D.R. 
Legates and C.J. Willmott, “Mean Seasonal and Spatial Variability in Global Air 
Temperature,” Theoretical Applied Climatology 41(1990):11–21.

b.  �M. Rodell et al., “The Global Land Data Assimilation System,” Bulletin of the American 
Meteorological Society 85, no. 3 (2004): 381–94, http://dx.doi.org/10.1175/BAMS-85-
3-381.

c.  �S. Saha et al., “The NCEP Climate Forecast System Reanalysis,” Bulletin of the American 
Meteorological Society August (2010): 1015–1057, doi:10.1175/2010Bams3001.1.

d.  �Rolf H. Reichle et al., “Assessment and Enhancement of MERRA Land Surface 
Hydrology Estimates,” Journal of Climate 24, no. 24 (December 2011): 6322–6338, 
doi:10.1175/JCLI-D-10-05033.1.
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Of the three datasets, to our knowledge only GLDAS-2 runoff has been 
validated against gauged discharge in terms of absolute deviations.44 MERRA-
Land has been compared with gauged data, but only in relative terms.45 That is 
to say, MERRA-Land anomalies have been assessed for accuracy, but absolute 
estimates have not been assessed. In fact, in our comparisons of long-term 
mean runoff from GLDAS-2, CFSR, and MERRA-Land vs. UNH-GRDC, we 
found that MERRA-Land was the driest of the four datasets (Figure A2), but 
that GLDAS-2 closely matched the UNH-GRDC data with little overall bias 
over most of the globe. The exception is in arid to semi-arid regions (note 
departure of the red line from the 1:1 line in the lower left panel of Figure A2), 
as discussed above. 

Figure A2a |  �Comparison of Flow Accumulated Runoff (Bt) among Four Datasets

Source: WRI Aqueduct project.
Note: �See Table A2a for characteristics of datasets. Points represent individual catchments (n = 14998); the dashed line indicates a 1:1 relationship; the red line indicates a loess smoother,  

and the time period indicates the interval over which the runoff values were averaged. Departures of the red line from the 1:1 line indicate bias of one dataset relative to the other.  

In addition to its accuracy, several factors cause us to favor GLDAS-2 over 
CFSR and MERRA-Land. First, it has the longest period of record, extending 
from 1948 to 2008. Second, there are substantial plans to extend the model 
period to the present, and update the resolution to 0.25 degree.46 Although 
GLDAS-2 currently uses only the Noah land surface model to produce runoff 
estimates, it will eventually be provided as an ensemble of four different land 
surface models. This is important because the underlying land surface model 
can be a significant source of variation in runoff estimates,47 and therefore 
an ensemble is preferred to minimize the bias resulting from any one model. 
Future enhancements in GLDAS should enable us to maintain continuity in 
Aqueduct’s water supply estimates while improving overall accuracy.
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