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5  Introduction

The world is witnessing an increased 
frequency of environmental crises, 
largely arising from anthropogenic 
changes caused by human activity.1,2 

Social groups marginalized along class and caste lines 
are often the ones most vulnerable to such crises.3  
In this brief, we broadly look at three areas where 
environmental health and human livelihood intersect 
in India and discuss the opportunities and challenges 
related to the use of AI technologies in these areas. 

First, in the context of forests, we discuss methods to 
track and improve forest health. 

Second, in the context of agriculture, we discuss meth-
ods to improve groundwater management. 

Third, we examine flood management. In all these domains,  
we specifically discuss AI-based tools that can assist 
communities in managing their natural resources, while 
acknowledging that community participation is essen-
tial for robust environmental health.
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Remote sensing data is being actively 
used to classify forest and non-forest 
areas and track forest degradation and 
deforestation.4 
High-resolution data can potentially even detect local logging 
events5, and LIDAR (Laser Imaging, Detection, and Ranging) 
measurements from GEDI can be used to train machine learn-
ing models to produce accurate wall-to-wall assessments 
of tree height and canopy density.6 Forest classification and 
change detection methods can, thus, objectively assess the 
status of forests and are useful in monitoring. 

Knowledge of the dominant tree species in an area, collect-
ed through crowdsourcing, can further help estimate the 
biomass and carbon sequestration performed by the forest7 
and identify sites for restoration or afforestation.8 Such forest 
conservation initiatives can also provide an additional revenue 
stream through carbon offsets9 and help plan land use by 
suggesting suitable combinations of cropping and forestry.10 
Site assessment for new tree planting activities could also 
be improved by taking soil type, soil moisture, water plan-
ning, and other factors into account11 and monitoring the 
outcomes over time.

One problem that is encountered frequently while planning 
forest restoration activities is the identification of a suitable 
mix of tree species local to each region that can improve biodi-
versity, instead of creating monoculture plantations. A time 
series of satellite images could help with the tracking and clas-
sification of tree species in an area12, aided by self-supervised 
super-resolution techniques as a preprocessing step.13 

Further, agent-based simulation models can be used to predict 
the prevalence of different tree species based on the dynam-
ics of species populations, their interactions such as predation, 
competition, and mutualism, and the effects of environmental 
factors such as climate, habitat availability, and resource avail-
ability. This can be used to create optimal tree plantation plans 
for different regions.

Forests
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Almost half the Indian population is 
facing groundwater stress,14 which is 
likely to be aggravated with climate 
change.15 
It is imperative to consider groundwater as a commons 
resource16 and allocate it equitably by planning both supply-
side interventions, such as water structures, and demand-side 
interventions, such as changes in cropping patterns. 
District-level vulnerability indices for climate change and 
water stress have been prepared for India17, but these reports 
are infrequently updated and rely on coarse spatial and  
temporal data. High-resolution data sets are available, however, 
to obtain measurements of precipitation, surface run-off, water 
storage, evapotranspiration, soil moisture, and so on.18 

Regional calibrations can be improved by making use of 
intra-annual land use and land cover (LULC) maps obtained 
through machine learning–based classification of satellite data 
to determine areas under single cropping (one crop planted in 
a year, in the kharif season) and multiple cropping (more than 
one crop planted in a year, in the kharif and rabi seasons)19 as 
well as other more static classes such as forest cover, surface 
water, and built-up areas.20 Area-wise assessments of ground-
water can thus be made in a time series–based manner.21

Ground water
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Based on these area-wise assessments, specific plans to 
identify sites for rainwater harvesting can also be made 
by taking into account factors such as the soil type, slope, 
precipitation, soil moisture, and LULC22. New methods such 
as causal machine learning, with machines trained on past 
data of rainwater harvesting structures, can be predictive 
of the future potential of different sites for water manage-
ment and may be better at identifying good sites than 
methods based on thumb rules. These methods require 
the computation of variables such as changes in cropping 
intensity on farm lands lying in close proximity to water 
structures and the specific times in a year when the water 
structure has water available for irrigation. 

Intra-annual LULC methods, as described earlier, can help deter-
mine the first variable, and methods to detect surface water 
seasonality can determine the second variable. While identifying 
perennial water bodies is easier23, the classification of seasonal 
water bodies has been challenging. Their turbidity, smaller size, 
shallow depth, and resemblance to highly irrigated areas makes 
the identification of seasonal water bodies using medium reso-
lution satellite data complex, but the results are promising.24
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Summer monsoon rainfall prediction is 
crucial for decision-making in various 
sectors such as agriculture, energy, water 
resources, health, and flood management. 
The inter-annual variabilities of monsoon 
rainfall are mainly caused by factors such 
as the El Niño Southern Oscillation (ENSO) 
and Indian Ocean Dipole (IOD)25, and the 
rainfall can also vary significantly over 
different spatial regions. 
Machine learning–based models are likely to outperform 
traditional physical models used for seasonal rainfall predic-
tion by modelling these spatial covariates more precisely. 
New methods such as graph neural networks (GNNs) are able 
to accomplish such “geometric learning” of spatiotemporal 
patterns in the underlying data sets26 and are known to be able 
to find highly interpretable connections between variables.

GNNs are also likely to be useful for flood prediction. At the level 
of a basin, for instance, nodes can represent sub-basins and 
edges can represent channels connecting them, and this model 
can be used to predict stream flows on the complete graph.27 
Based on this, indices depicting flood severity, risk, and vulnera-
bility can then be developed to plan flood adaptation strategies.

Flood 
management
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It is important that predictions and 
recommendations based on machine 
learning methods such as the above 
are not imposed in a top-down manner 
but are rather seen as assistive tools 
for communities to use in participatory 
planning processes. 

This is essential, so that local knowledge and experience shapes 
decision-making, and the community does not lose control 
over decisions that directly affect their members. For example, 
methods used by indigenous communities to manage and 
conserve forests are known to yield better results than methods 
formulated with bureaucratic or professional assistance.28 

We define community-based development as planning and 
implementation processes that are shaped by those local 
communities that have the required capability and commit-
ment to take part in these processes.29 We believe that 
non-participatory mechanisms stand the risk of missing out 
on local insights, which can even lead to harm, and also disem-
power communities by rendering them recipients without 
agency of top-down decision-making processes rather than 
making them democratic co-owners in a collaborative and 
decentralized governance process of planning and implemen-
tation. This draws upon Schumacher’s notion of appropriate 
technology30 and its current digital equivalent as technolo-
gy that is designed in a user-centred manner and used and 
managed directly by the community itself.31

Keeping in mind that the trap of technology solutionism 
and technology determinism should be avoided, the various 
AI-based methods described in the earlier sections can be 
embedded in tools such as the following, operated through 
participatory processes. 

Tools for 
Communities
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Our research group at IIT Delhi is working on such tools and 
processes:

 • GIS-based tools to enable communities to understand the historic 
trends of water stress in their geographies;

 • a participatory decision-support tool to assist communities in site 
assessment to build water structures and to bring about changes 
in cropping patterns to tackle water stress;

 • tools for forest communities to track rotational foraging practices 
and tree species biodiversity through satellite data, to understand 
forest health in different parts;

 • GIS-based methods for water management in forest areas to 
improve forest rejuvenation; and

 • tools for planning of agroforestry on private land, aided with site 
assessment, species selection, and monitoring of plantation 
health using remote sensing data.

These tools are envisioned to be socialized through trained 
volunteers from the same communities because of their 
understanding of the local context. 

The rationale of working through community volunteers, or 
rather community stewards, who are trained in various tech-
nological and developmental elements, instead of relying on 
external professional staff, for example, is further driven by 
the belief that nurturing an ethic of care and solidarity towards 
communities results in robust local community institutions. 

Such institutions can serve to not only operate the envisioned 
AI-based tools in contextually appropriate ways, but will 
also encourage wider cooperation and cohesiveness in the 
community to cope with any future crises. They will enable 
marginalized groups to participate in local governance and 
decision-making processes. Going beyond community-based 
development, this is called the commoning approach32, to 
emphasize the need for strong bottom-up structures of 
mutual support to sustain the communities during times of 
hardship and overcome entrenched unjust and oppressive 
structures that have resulted in negative impacts on these 
marginalized groups.

2  Applications
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India has a rich set of welfare schemes 
such as Mahatma Gandhi National 
Rural Employment Guarantee Act 
(MGNREGA), Pradhan Mantri Krishi 
Sichayee Yojana (PMKSY) for irrigation, 
National Mission for Sustainable 
Agriculture (NMSA), and so on aimed at 
both generating livelihood and creating 
assets useful for the environment and 
local communities.33 
MGNREGA works for rainwater harvesting, canal maintenance, 
check dams for watershed management, agroforestry, and 
land levelling to make fallow lands cultivable, among others. 

These schemes have been observed to yield significant 
environmental benefits, such as reduced soil erosion, 
improved groundwater availability, and increased carbon 
sequestration.34 Tools such as the ones suggested 
above, based on methods that use AI, can be useful for 
communities to plan new structures and put forth their 
demands for sanctioning of appropriate funds from the 
local government. Subsequent monitoring of the outcome 
of these structures, such as changes in cropping patterns or 
surface water availability, can lead to greater transparency 
and help track if vulnerable groups are indeed able to 
benefit from these government schemes.

Similarly, for afforestation, where carbon credits are projected 
as being able to provide incentives to grow trees, tools such as 
the ones listed above can help monitor carbon initiatives and 
avoid exploitation of the poor when development initiatives 
do not go as planned but are continued nevertheless. This was 
noticed with a carbon offset project in the state of Haryana 
in India which aimed to compensate smallholder farmers 

3 Actors
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for conversion of their lands to tree plantations but failed to 
provide timely and fair payments, which led to further impov-
erishment of poor farmers.35 

Similar concerns of dispossession have surfaced in other 
carbon offset projects too36, along with concerns that carbon 
credits are priced much lower than the actual social cost of 
carbon.37 Such studies highlight the need to have strong local 
institutions to flag emergent problems as well as correct any 
mistakes arising from uncertainty in technology-driven recom-
mendations and monitoring tools.38 

Addressing over-crediting of carbon offsets is another prob-
lem that may benefit from more ground data and participatory 
processes to ensure that appropriate baselines or count-
er-factual assessments are used to measure additionality, 
permanence, and leakage in carbon offset projects.39 

3 Actors
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As has been argued, the technology 
to computationally model many 
natural processes is rapidly maturing 
and can aid climate action by helping 
with environmental monitoring and 
decision support. 

The availability of good-quality data to train these models is a 
challenge but is seeing investment from both private donors (such 
as GIZ, Radiant Earth Foundation, Lacuna Fund) as well as public 
bodies. The policy environment to adopt such technologies is also 
positive – although not always for altruistic or democratic reasons, 
but rather for political and profit-making reasons. The risks at this 
moment, therefore, seem to be related to the following:

Over-promising the capability of the technology

Natural processes are complex, and their computation-
al modelling accuracy depends on which variables are 
included, how well they are transformed into data and the 
corresponding availability of data to train the models. Agen-
das of economic or political benefit can over-promise the 
capabilities, and inadequate regulation for transparency and 
accountability can lead to a proliferation of cases where 

poor technology is deployed, which could create harm.40 

Use of AI-based support in a top-down rather  
than  paticipatory manner

If tools such as the ones described in this brief are adopted 
by the government to plan the implementation of forest reju-
venation or groundwater recharge, there is a risk of not only 
being inadequately informed of the local context to make up 
for technology errors, but also entrenching power in the hands 
of the bureaucrats.41 Decades of progress made by social 
movements to strengthen decentralization and empower 
communities to engage with the state on their own terms can 
be compromised.

4 Enabling Environment & Risks
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Technology solutionism and technology determinism

Technology solutionism – the idea that technology can solve a 
problem by itself – and technology determinism – that technol-
ogy will lead to/determine specific outcomes42 – are attractive 
narratives for technocrats because it validates their relevance 
and also helps them align with politicians and bureaucrats who 
stand to benefit from a similar centralization of power. 

In the current context, big-tech, which benefitted prominent-
ly from the Internet economy (such as Google, Facebook, 
Amazon) and extensive computerization (such as Microsoft), 
is already very powerful in terms of computational capabili-
ties and overreach with regulators and is actively co-opting 
the narrative of doing social good through their work.43 As has 
been validated time and again, however, such technocratic 
approaches have a high failure rate and lead to the dispos-
session of nature and humanity while benefitting companies. 

Increasing inequality

The AI-based innovations described in this brief were mostly 
community-centric – that is, at the level of landscapes rather 
than for individuals. The same techniques, however, are being 
actively adopted by agri-tech start-ups, which have a prom-
inent business model of selling innovations to farmers who 
can afford these tools. When technology is sold to consumers 
– that is, to those who can pay and make their lives more effi-
cient – it tends to increase inequality by forcing others to play 
perpetual catch-up. 

The Green Revolution in India is a prominent example of how 
larger and more prosperous farmers benefitted significantly 
from improved yields because they could afford fertilizers 
required by the new seed varieties. Building technologies 
for consumers instead of citizens, thus, stands the risk of 
increasing inequality in society and further contributes to 
super-inequality by disproportionately benefitting technocrats, 
politicians, and bureaucrats.
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Avoiding these risks requires stronger regulation, an alert civil 
society, a community-based and participatory approach to 
designing tools, and a commitment towards the democratic 
principles of equality and empowerment of the weak. We 
believe that such a transformation in an approach towards 
conceptualizing and designing technology in general, not just 
AI, requires the technologists themselves to be more aware of 
the societal risks related to technology and to adopt an ethos 
of working more closely with society.44

4 Enabling Environment & Risks
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