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Abstract 
 
In many parts of mainland Southeast Asia rubber plantations are expanding rapidly in areas where the crop 
was not historically found. Monitoring and mapping the distribution of rubber trees in the region is necessary 
for developing a better understanding of the consequences of land-cover and land-use change on carbon and 
water cycles. In this study, we conducted rubber tree growth mapping in Northeast Thailand using Landsat 5 
TM data. A Mahalanobis typicality method was used to identify different age rubber trees. Landsat 5 TM 30 
m non-thermal reflective bands, NDVI and tasseled cap transformation components were selected as the 
model input metrics. The validation was carried out using provincial level agricultural statistical data on the 
rubber tree growth area. At regional (Northeast Thailand) and provincial scales, the estimates of mature and 
middle-age rubber stands produced from 30 m Landsat 5 TM data compared well (high statistical signifi-
cance) with the provincial rubber tree growth statistical data. 
 
Keywords: Northeast Thailand, Rubber Tree Mapping, Land-Use and land-Cover Change, Mahalanobis 

Typicality, Kauth-Thomas Transformation, Landsat 5 TM 

1. Background 
 
Around the world regional and global markets are driving 
the conversion of traditional agriculture and occupied 
non-agricultural lands to more permanent cash crops. In 
many parts of mainland Southeast Asia rubber plantations 
are expanding rapidly in areas where the crop was not 
historically found [1]. Over the last several decades more 
than 1,000,000 hectares of land have been converted to 
rubber plantations in non-traditional rubber growing 
areas of China, Laos, Thailand, Vietnam, Cambodia and 
Myanmar [2,3]. Like many mainland Southeast Asian 
countries, Thailand has experienced dramatic social and 
environmental change over the past decade [4]. North- 
east Thailand is a semi-arid [5] and chronically undeve- 
loped area, and is a non-traditional rubber growing 
region of Thailand (Figure 1). Rubber tree development 
in this region has been booming for the past two decades. 
To encourage farmers from leaving home to find jobs in 
other parts of the country, this region is being targeted by 
the Thai government to grow more rubber trees in the 
next decade. The expansion of rubber trees has altered 
the ecosystem by influencing local energy, water and 
carbon fluxes, especially when rubber trees replaced eco- 

logically important secondary forests and traditionally 
managed swidden fields [6-9]. Timely monitoring and 
mapping rubber tree growth distribution in the region is 
critical for documenting its expansion and understanding 
its implications for water and carbon dynamics.  
 
2. Introduction 
 
Remotely sensed imagery classification for deriving 
land-use/cover information is well documented and plays 
an important role in global-change studies, natural re- 
source management and environmental applications. A 
number of studies of the distribution of rubber tree 
growth have been conducted in Southeast Asia, such as 
in Yunnan, China [7,8,10], Indonesia [11] and Laos [12]. 
Most spatial analysis of rubber trees has been limited to 
suitability analyses in Thailand (e.g. [13]). Land-cover 
mapping over large areas with limited training samples is 
challenging due to the capability of classifiers to gener- 
alize patterns in unsampled areas. Analysts attempting to 
map rubber tree growth face two significant challenges. 
First, mature rubber trees are easily confused with tropi- 
cal evergreen vegetation due to similar multi-spectral 
reflectance characteristics. Area of mature rubber trees is  
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Figure 1. Map of Northeast Thailand. 

often overestimated by misclassifying secondary forests 
as rubber trees. Second, young rubber trees are usually 
dominated by bare ground and mixed scrub, or inter- 
cropped with short-term economic crops such as cassava 
and pineapple. Even after 3 - 4 years of growth, rubber 
tree canopies comprise a small fraction of total planted 
area. These conditions make it difficult to map rubber 
trees.  

Recently machine learning techniques [14] such as ar- 
tificial neural networks and decision tress [15] have been 
widely used in remotely sensed imagery classification 
because they show many advantages over conventional 
classifiers [16-18]. However, the substantial computation 
time and heuristic training process of machine learning 
classifiers make rubber tree growth mapping over large 
areas inefficient. Experiments conducted by Li and Fox 
[19] suggest that using approaches of neural networks 
and decision trees with spectral information and vegeta- 
tion indices overestimated the number of rubber tree pix- 
els. Additionally, these classifiers require training sites to 
contain sufficient both “presence” and “absence” infor- 
mation. In other words, the analyst must acquire such 
information from the training samples. In reality, it is 

difficult to collect sufficient training samples in the field 
to cover the numerous patterns of rubber tree stages that 
show up in an analysis. Given this fact, a presence-data- 
only model looks increasingly promising in dealing with 
species distribution mapping, especially when knowl- 
edge about available land-cover types is limited. Sanger- 
mano and Eastman [20] and Hernandez et al. [21] con- 
ducted experiments using a presence-data-only model – 
Mahalanobis typicality approach to model species dis- 
tribution, as Mahalanobis typicalities provide informa- 
tion about how typical instances being analyzed are 
compared to those used as a reference [20].  

Selection of satellite images is another critical step for 
mapping of land-cover. Given the trade-off between spa- 
tial and temporal resolutions, currently selection of re- 
motely sensed data for land-cover mapping at a global or 
a regional scale tends to use either low spatial but high 
temporal resolution imagery, such as Moderate Resolu- 
tion Imaging Spectro-radiometer (MODIS) (e.g. [22]), or 
low temporal but high spatial resolution imagery such as 
Landsat Thematic Mapper (TM)/Enhanced Thematic 
Mapper (ETM+), etc. [23-27]. Li and Fox [28] improved 
rubber tree growth mapping using ASTER data by inte- 
grating Mahalanobis typicalities with a neural network 
model. Another successful application using Mahalano- 
bis typicality approach was the mapping of rubber trees 
across the mainland Southeast Asia using the Mahala- 
nobis typicality method with MODIS time-series NDVI 
and statistical data [19]. In this study we examined the 
potential of Mahalanobis typicalities for rubber tree 
growth distribution mapping using Landsat 5 TM imagery. 
 
3. Study Area and Data  
 
The study area encompasses nineteen provinces of Nor- 
theast Thailand as shown in Table 2 and Figure 1. The 
Landsat 5 TM imagery used in this study was acquired 
from Land Processes Distributed Active Archive Center 
(LPDAAC). Eleven TM scenes (WRS Path/Row: 
126-129/47-50) were used to cover the entire study area. 
The acquisition dates of the images vary from 2004 to 
2009, depending upon the availability of cloud free or 
acceptable cloud contamination images. To develop 
training sites for calibrating the classifiers, we used 
NASA’s Landsat GeoCover products (http://www.geo- 
cover.com/gc_lc/data_products/) to identify land-use and 
land-cover types. Rubber tree identification was primar- 
ily based on GPS ground truthing samples collected in 
the field in January and March 2009 and high resolution 
QuickBird / IKONOS images from Google Earth. Since 
the main purpose of this experiment was to map rubber 
tree growth distribution, only six broad categories were 
identified for the study region, i.e., rubber trees, forest, 
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water, bare soil, paddy rice and others. Three sub-cate- 
gories were defined for the rubber tree class: 1) Rubber 1, 
mature rubber trees older than 4 years old; 2) Rubber 2, 
middle-age rubber trees between 2 to 4 years old; and 3) 
Rubber 3, young rubber trees less than 2 years old domi- 
nated by bare ground and mixed scrub, or intercropped 
with other crops. Figure 2 shows photographs of dif- 
ferent age rubber stands under various situations. Train- 
ing sites comprising a total of 85,697 rubber tree samples 
were developed, accounting for 0.046% of the total study 
area. Among those samples, 67,839 were of mature rub- 
ber trees, 12,770 were of middle-age rubber trees, and 
5088 were of young rubber trees, accounting for 0.037%, 
0.007% and 0.003% of the total study area respectively 
(Table 1). 

Rubber tree growth statistical data provided by the 
Thai Rubber Association (http://www.thainr.com/en/in- 
dex.php?detail=stat-thai&page=1#) estimated rubber tree 
growth area and production between 2005 and 2007 at 
the provincial scale. Provincial and international bounda- 
ries were extracted from a Thailand vector GIS layers for  

 

Figure 2. Different age rubber trees: (a) Rubber trees more 
than 7 years old (tapping); (b) Rubber trees between 4 and 
7 years; (c) Rubber trees less than 4 years old dominated by 
bare soil; (d) Rubber trees less than 4 years old inter-
cropped with cassava; (e) Rubber trees less than 4 years old 
intercropped with pineapple; and (f) Rubber trees less than 
4 years old mixed with fallow weeds. (Source: Li and Fox 
[19], 2011) 

validating the statistical data.  
 
4. Methods 
 
4.1. Image Pre-Processing 
 
Atmospheric correction using Chavez’s Cost model was 
applied to the TM images to reduce atmospheric scat-
tering effects [29,30]. The TM images were 
geo-metrically corrected using the Landsat GeoCover 
data set and the nearest neighborhood resampling 
method [31]. All images were co-registered to the UTM 
system (zone 48 N). Clouds and shadows were masked 
out from the images. 
 
4.2. Development of Input Metrics 
 
The Normalized Difference Vegetation Index (NDVI), a 
frequently used measure of photosynthetic activity to 
estimate productivity [32], is sensitive to canopy struc- 
ture and chemical content [33]. In this study, Landsat 
TM NDVI was derived from TM band 4 and band 3, to 
capture general patterns of different vegetation types. 
The NDVI formula we used was:  

Band4 Band3
NDVI

Band4 Band3





           (1) 

The Kauth-Thomas Transformation (KTT or tasseled 
cap transformation) [34,35] has been found to be sensi- 
tive to structural characteristics of forest environments 
[35,36]. To highlight spectral difference among stands of 
different age rubber trees, e.g., mature, middle and young, 
as well as that among rubber trees and deciduous forest, 
shrubs and bare soil etc., we employed KTT on the six 
reflective TM bands to produce soil brightness, vegeta- 
tion greenness, and soil/vegetation wetness components. 
The vegetation greenness component is well correlated 
with tree canopy cover, leaf area index and live biomass 
above ground [37]; therefore it was expected to be able 
to capture difference among stands of rubber trees of 
diverse ages due to differences in canopy densities. The 
soil brightness component expresses differences in soil 
properties, such as particle size and organic matter con- 
tent; and the soil/vegetation wetness component is sensi- 
tive to soil and plant moisture [37]. These two compo- 
nents together were expected to capture difference be- 
tween young rubber trees (dominated by bare soil or 
shrubs) and pure bare soil fallow fields. The KTT equa- 
tions [41] we used were:  

TM Bright = TM1 × 0.3037 + TM2 × 0.2793 + TM3  
            × 0.4343 + TM4 × 0.5585 + TM5  
            × 0.5082 + TM7 × 0.1863 
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TM Green = TM1 × (–0.2848) + TM2 × (–0.2435)  
             + TM3 × (–0.5436) + TM4 × 0.7243  
             + TM5 × 0.0840 + TM7× (–0.1800) 

TM Moist = TM1 × 0.1509 + TM2 × 0.1793 + TM3  
            × 0.3299 + TM4 × 0.3406 + TM5  

× (–0.7112) + TM7× (–0.4572)     (2) 

 
4.3. Mahalanobis Typicality 
 
In statistics Typicality Probability can be expressed by 
the relative distance of a particular class to the class 
mean, i.e., Mahalanobis distance [38-40]: 

   1T

i i iD   x μ V x μ          (3) 

where x is the input variable vector (from the context of 
remote sensed imagery, x is the data vector for the pixels 
in all wavebands), μi is the mean vector for class i over 
all pixels, Vi is the variance/covariance matrix for class i, 
and T is the transpose of the matrix . 

Ranging from 0 to 1, the Mahalanobis typicality meas- 
ures the absolute strength of class membership [40] and 
determines the similarity of an unknown sample to a 
known group of samples. A typicality value of 0 indi- 
cates the instance being analyzed is atypical of the refer- 
ence samples, while a value of 1 suggests the instance is 
identical to the known samples. Therefore, typicality 
values express how reasonable to assume a case really 
belongs to a particular class. In the context of remotely 
sensed imagery classification, the outputs of Mahalano- 
bis typicalies are a set of probability images (one per 
class) that express the typicality of each pixel relative to 
the training samples. Because a Mahalanobis typicality 
calculates an intra-class similarity, it can use presence- 
only data and is not affected by absence-data. For more 
detailed description of Mahalaanobis Typicality, see 
Eastman [41] (2009) and Sangermano and Eastman [20]. 
 
4.4. Classification and Image Post-Processing 
 
Since TM scenes acquired in succession on the same 
track (with the same path numbers) are of more consis- 
tency in terms of the radiometry, we mosaiced the TM 
scenes with the same path numbers to spatially produce 
larger images. Separate training sites were developed for 
each of the mosaiced images. Four mosaiced images 
were made to cover the whole study area. Each larger 
mosaiced image was processed individually for land- 
cover classification.  

Six TM reflective bands (1-5 and 6), NDVI, and the 
greenness, brightness and the moistness from the KTT 
were developed for each mosaiced image and used as 
input variables to the Mahalanobis distance classifier. 

Unlike traditional hard classifiers, the output from the 
Mahalanobis distance classifier is not a single classified 
land-cover map, but rather, a set of images (one per class) 
that expresses typicality of pixel reflectances relative to 
those described by the training sites. In our case study, 
eight Mahalanobis typicality maps were generated rep- 
resenting the typicality probabilities for each of the eight 
categories (Table 1). Since we are interested in the dis- 
tribution of rubber tree growth, only the rubber tree 
classes, e.g, mature, middle-age, and young were ana- 
lyzed and the rest of five classes were ignored. To reduce 
commission errors of rubber trees (i.e., the probability 
that a sample from a land-cover map is misclassified 
against what it is from the reference data) only pixels 
that were most typical of the rubber tree classes de- 
scribed by the training sites were retained. To do this, we 
set typicality thresholds of 0.94 - 0.97 for both mature 
and middle-age rubber trees, and 0.99 for young rubber 
trees. These thresholds were determined based on the 
best calibration of the classifier using our training sites. 
The threshold set for the young rubber trees (0.99) is 
more restricted than those for mature and middle-age 
rubber trees because young rubber trees are highly likely 
to be confused with bare soil or fallow fields after plow- 
ing. A discrete map of rubber tree growth (Boolean map) 
was extracted by thresholding the typicality values for 
each type of rubber trees. However, the rubber tree 
growth map created this way scattered rubber trees into 
small patches because the high typicality thresholds fil- 
tered out pixels with lower typicalities even when they 
neighbor “most typical” pixels and actually do belong to 
a rubber tree category. To overcome this drawback, we 
used 11 × 11 sized mean filters to retrieve neighboring 
pixels excluded by the Mahalanobis typicality. Again, 
thresholds were set adaptively with the filtered images 
for each of the three types of rubber trees based on the 
best calibration using the same training site information. 

Table 1. Number of land-cover training samples for North- 
east Thailand. 

Class 
ID

Class 
Number of 
Pixels (cell) 

Proportion
(%) 

1 Mature rubber trees (>4 years) 67,839 0.037 

2 Middle-age rubber trees (2 - 4 years) 12,770 0.007 

3 Young rubber trees (<2 years) 5088 0.003 

 Subtotal 85,697 0.046 

4 Bare soil 18,278 0.010 

5 Paddy 35,438 0.019 

6 Forest 6,723,175 3.622 

7 Water 394,528 0.213 

8 Others 42,579 0.023 

 Total 7,299,695 3.932 
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The final rubber tree growth map was generated by over- 
laying the three types of rubber tree maps. The class 
membership of ambiguous pixels such as those classified 
as rubber trees in more than one of the three types of 
rubber tree growth maps were determined by assigning 
each pixel to the class where it had its highest typicality 
statistic. The selected filters were able to generalize the 
image and exclude isolated misclassified rubber tree pix- 
els, thus the filtered images retain both map accuracy and 
the spatial connectivity of the rubber tree classes. 
 
4.5. Validation  
 
The output rubber tree growth map for Northeast Thai- 
land created from the TM images estimates rubber tree 
growth area by pixel. The total area of rubber trees was 
then extracted to the provincial level. The results were 
compared with provincial level statistical data from 
Thailand collected between 2005 and 2007. The relative 
error (RE) was used to evaluate the accuracy of the esti- 
mated rubber tree area for each province in Northeast 
Thailand, i.e.,  

RE = (Estimated – Statistics)/Statistics × 100 (4) 

Linear regressions were employed between the statis- 
tical data and the estimates (30 m Landsat TM data) for 
validation [22]. The root mean square error (RMSE) was 
calculated between the statistical values and estimates for 
the study area using the following equation:  

 2

1

RMSE Statistics Estimated
n

i

n


       (5) 

where n is the number of provinces in Northeast Thai- 
land.  

Areas of different age rubber trees were compared 
between the estimated and statistical data. The follow- 
ing area indices were calculated from the statistical 
data:  

     Am 2006 = At 2006 – Ah 2006 – An 2006 

An 2006 = At 2006 – At 2005          (6) 

where  
Ah 2006: Area of tapped rubber trees (>7 years old) in 

2006 
Am 2006: Area of middle-age rubber trees (2 - 7 years 

old) 
An 2006: Area of new rubber trees (less than 2 years old) 

planted in 2006 
At 2006: Total area of rubber trees planted in 2006 
At 2005: Total area of rubber trees planted in 2005  
Due to different age groups defined in the rubber tree 

growth classification (i.e., <2, 2 - 4 and >4 years old), the 
estimated areas of the classified rubber trees from the 

satellite imagery were not directly comparable with those 
from the statistical data (i.e., <2, 2 - 7 and >7 years old). 
Conversions were needed for the estimated results to 
make them consistent with the statistical data. To do this, 
the area of the mapped rubber tree growth that is equiva- 
lent to 2 - 7 years old as defined in the statistical data  
(Am 2006) was approximated using the following equation:  

Estimated Am 2006 = 0.4 × ARubber1 + ARubber2  (7) 

where ARubber1 and ARubber2 are areas of Rubber1 and 
Rubber 2, which were defined as more than 4 years old 
and between 2 and 4 years old, respectively. 
 
5. Results and Discussion 
 
Figure 3 is a rubber tree growth map generated from the 
TM imagery showing mature, middle-age, and young 
rubber trees for Northeast Thailand. Tables 2 and 3 
compare the estimated rubber tree area versus the statis- 
tical data.  

Rubber tree growth estimates in most of the nineteen 
provinces in Northeast Thailand were based on TM im- 
ages acquired in 2006, but data from Ubon Ratchathani 
province were from a 2009 image, because it was the 
best cloud-free image available covering this region. 
Sakon Nakhon and Nakhon Phanom provinces were 
based on 2007 images, and Nong Khai and Kalasin were 
covered by multiple images ranging from 2004 to 2007 
(Table 2). The estimated rubber tree area for each prov- 
ince from the TM imagery actually reflected total area of 
rubber trees planted in a particular province as of the 
acquisition date(s) of the image(s). For example, Nong 
Khai province is covered by three TM scenes acquired 
from three different dates of 2004, 2006 and 2007. To 
reasonably validate the estimated rubber tree area, we 
used adjusted statistical data instead of the statistical data 
from each year, e.g., for Nong Khai, the validation was 
based on the average of rubber tree growth areas in 2004, 
2006 and 2007. Similarly adjusted statistical data were 
used for the other provinces. For Ubon Ratchathani 
province, although time is asynchronous between the 
statistical data (2007) and Landsat 5 TM image (2009) 
(Table 2), it is reasonable to see that the area estimated 
from the latter is higher than the actual area from the 
former, which may indicate an increase of rubber plant- 
ing area during the two years.  
 
5.1. Total Rubber Tree Growth Area  
 
The relative errors (RE) shown in Table 2 provides in- 
formation about the accuracy of rubber tree growth area 
estimates for each province. Results indicate that the 
estimated area of rubber trees for most provinces is con-     
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Figure 3. Landsat TM estimated rubber tree distribution in Northeast Thailand for 2004-2007. Numbers 1 - 19 represent the 
19 provinces listed in Table 2. 

sistent with the adjusted statistical data except in four 
provinces, Maha Sarakham, Nakhon Ratchasima, Sakon 
Nakhon and Khon Kaen. Estimates for ten of the nine- 
teen provinces performed well with REs below one third, 
and five of which performed very well with REs below 
16%, including Nong Khai, Kalasin, Udon Thani, Ubon 
Ratchathani and Mukdahn. The ratio of RMSE to the 
statistical data for all the nineteen provinces was only 
2.89%. Figure 4(a) illustrates per province rubber tree 
growth area comparison between the Landsat estimate 
and the adjusted statistical data. The regression of rubber 
tree growth area at the provincial level was statistically 
significant (y = 1.0008x + 702.4; R2 = 0.774; p ≤ 0.001). 
When the three provinces with the highest REs (i.e., 

Maha Sarakham, Nakhon Ratchasima, Sakon Nakhon) 
were excluded from Table 2, the ratio of RMSE to the 
statistical data of the estimated rubber tree growth area 
for the sixteen provinces decreased to 2.08%, and R2 for 
the regression line increased to 0.9106 (y = 1.0471x + 
2006.1; R2 = 0.91; p ≤ 0.001) (Figure 4(b)). The total 
area of rubber tree growth for the sixteen provinces was 
underestimated by 21,800 ha, which was less than 10%. 
The following analysis and validation is based on data 
from these sixteen provinces. 
 
5.2. Mature Rubber Trees 
 
The Landsat classification map defined mature rubber      
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Table 2. Provincial level rubber tree growth areas for Northeast Thailand from 2006 statistical data and 30 m Landsat TM 
estimates. 

ID Province 
Statistical data  
(adjusted) (ha) 

Statistics period TM Estimates (ha) TM acquisition date Relative error (%)

1 Nong Khai 56,633 Average of 2003, 2005, 2006 and 2007 59,459 
Nov 21, 2004  
Nov 04, 2006  
May 08, 2007 

4.99 

2 Loei 12,538 Average of 2003 and 2005 14,164 Nov 21, 2004 12.97 

3 Sakon Nakhon 14,918 2007 35,644 May 08, 2007 138.92 

4 Udon Thani 25,700 Average of 2006 and 2007 23,992 Nov 04, 2006 –6.65 

5 Nakhon Phanom 13,172 2006 7487 May 08, 2007 –43.16 

6 Nong Bua Lam Phu 4955 2006 3457 Nov 04, 2006 –30.23 

7 Kalasin 8124 2007 8548 
Nov 04, 2006  
Nov 13, 2006  
May 08, 2007 

5.23 

8 Khon Kaen 5134 2007 10,423 Nov 04, 2006 103.02 

9 Mukdahan 9428 Average of 2005 and 2006 7944 Nov 13, 2006 –15.74 

10 Chaiyaphum 4186 2007 5232 Nov 04, 2006 24.97 

11 Maha Sarakham 517 2007 4415 Nov 04, 2006 753.21 

12 Roi Et 3086 Average of 2006 and 2007 4703 Nov 13, 2006 52.42 

13 Yasothon 5221 2006 1182 Nov 13, 2006 –77.35 

14 Amnat Charoen 3712 2006 1541 Nov 13, 2006 –58.48 

15 Ubon Ratchathani 25,575 2007 29,012 Jan 30, 2009 13.44 

16 Nakhon Ratchasima 2714 2007 13,421 Nov 04, 2006 394.53 

17 Buri Ram 18,175 Average of 2005 and 2006 13,142 
Nov 04, 2006  
Nov 13, 2006 

–27.69 

18 Si Sa Ket 14,028 Average of 2005 and 2006 540 Nov 13, 2006 –96.15 

19 Surin 9259 Average of 2005 and 2006 6297 Nov 13, 2006 –31.98 

 Total 
237,074/ 
218,924* 

 
250604/  
197124* 

  

 RMSE   
6845.71/  
4548.60* 

  

 RMSE/Statistics   
2.89%/  
2.08%* 

  

*Maha Sarakham, Nakhon Ratchasima, Sakon Nakhon were not included in the analysis. 
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Table 3. Provincial area of different age rubber trees for Northeast Thailand from 2006 statistics and 30 m Landsat TM 
estimates (Thai Rubber Association, http://www.thainr.com/en/index.php?detail=stat-thai&page=1#). 

Province 
Estimated Rubber 
1 (>4 years old) 

(ha) 

Estimated Rubber 
2 (2 - 4 years old) 

(ha) 

Estimated Rubber 
3 (<2 years) 

(ha) 

Approximated 
rubber trees 
(2 - 7 years) 

Tapped rubber 
trees** Ah 2006  

(ha) 

Middle-aged 
rubber trees  
Am 2006 (ha) 

New planted 
rubber trees 
An 2006 (ha) 

Nong Khai 48,355 10,327 777 29,669 15,848 26,013 27,100 

Loei 14,164 0 0 5666 5212 12,068 13,886 

Sakon Nakhon        

Udon Thani 22577 1288 127 10,319 7910 5112 3536 

Nakhon Phanom 3840 3447 200 4983 4458 4094 4620 

Nong Bua Lam Phu 2936 513 8 1687 953 2925 1077 

Kalasin 7629 857 63 3908 3023 1924 721 

Khon Kaen 7870 2507 46 5655 1258 841 974 

Mukdahan 7881 54 9 3206 3080 4505 2826 

Chaiyaphum 4718 504 9 2391 1068 640 1274 

Maha Sarakham        

Roi Et 4703 0 0 1882 1598 627 550 

Yaosothon 1182 0 0 473 1552 2609 1060 

Amnat Charoen 73 1112 356 1141 327 2325 1060 

Ubon Ratchathani 3066 19,931 6016  4584  7281 

Nakhon Ratchasima        

Buri Ram 11,649 1417 75 6077 8484 4566 7692 

Si Sa Ket 234 241 64 335 5388 5292 5854 

Surin 6269 27 1 2535 3576 4323 2053 

Total 147,146 42,225 7753 79,926 68,320 77,863 81,563 

*Sakon Nakhon, Maha Sarakham, Nakhon Ratchasima were not included in the analysis; **multiple-year statistical data were adjusted. 

trees as rubber trees more than four years old; this class 
covered a wider range than that represented by tapped 
rubber trees from the statistical data, as latex is generally 
collected from rubber trees that are more than 7 years old. 
It is thus expected that the area of mapped mature rubber 
trees should be greater than that of Tapped rubber trees. 
Figure 5 shows that the area of estimated mature rubber 
trees (rubber trees more than 4 years old) is significantly 
correlated (R2 = 0.7766; p ≤ 0.001) with the area of har- 
vested rubber trees at the provincial level (16 provinces), 
and the estimated area of mature rubber trees is ap- 
proximately 2 - 3 times more than tapped rubber trees.  
 
5.3. Middle-Age Rubber Trees 
 
Figure 6 illustrates that the area of rubber trees between 
two to seven years old for fifteen provinces (Ubon 
Ratchathani not included) approximated by the estimated 
area from Landsat using Equation (7) is consistent with 
that estimated from the statistical data. The two sets of 
data are significantly correlated (R2 = 0.7911; p ≤ 0.001) 
and the estimated area (79,926 ha) and statistics area 
(77,863 ha) are equivalent (see Table 3). This suggests 
that the area of middle-age rubber trees can be reasona- 

bly reflected through the satellite imagery although the 
mapped rubber tree growth has different age structure 
with the statistical data.  
 
5.4. Young Rubber Trees 
 
Mapping of young rubber tree growth has been difficult 
for researchers as young rubber trees are often dominated 
by diverse ground conditions. The estimate of the area of 
young rubber trees was not as satisfactory as those for 
mature and middle-age rubber trees. Table 3 shows the 
area of newly planted rubber trees in 2006 for the sixteen 
provinces versus the estimated area from the Landsat 
data. Results indicate that young rubber trees were only 
closely estimated for Ubon Ratchathani (6016 ha versus 
7281 ha from the statistical data), and remotely sensed 
based estimates of rubber tree growth area underesti- 
mated young rubber trees in all other provinces. This is 
because when using the Mahalanobis typicality method, 
only the pixels that are most typical of young rubber tree 
samples encountered in the training sites are retained. 
Those pixels that are less “typical” of training samples 
are screened out by the thresholds determined by the 
amount of rubber trees in each province. Figure 8(a)  
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      (a) 

 
(b) 

Figure 4. Estimated total area of rubber trees versus that 
from the adjusted statistical data for (a) 19 provinces (p ≤ 
0.001) and (b) 16 provinces (p ≤ 0.001) of Northeast Thai- 
land in 2006. 

shows no correlation (R2 = 0.034; p = 0.497) between the 
estimated and statistical data sets. However, when only 
looking at thirteen out of sixteen provinces (i.e., remov- 
ing Loei, Amnat Charoen and Nakhon Ratchasima), the 
estimated area of young rubber trees shows the same 
trend with that from the statistical data; there was a sig- 
nificant correlation (R2 = 0.9106; p ≤ 0.001) between 
these data sets (Figure 8(b)). This suggests that the map- 
ping accuracy would be expected to improve if more 
young rubber tree training samples were included to rep- 
resent a wider variability of this class (the available 
training samples used for young rubber trees only ac-  

 
Figure 5. Relationship between the estimated area of ma-
ture rubber trees (more than 4-years old) from Landsat TM 
data and the area of tapped rubber trees (usually more 
than 7-years) from the adjusted statistical data for North- 
east Thailand (16 provinces) (p ≤ 0.001).  

 
Figure 6. Estimated area rubber trees between 2 - 7 years 
old from Landsat TM data versus that calculated from sta-
tistical data for Northeast Thailand (15 provinces) (p ≤ 
0.001) in 2006.  

counted for 0.003% of the total study area). Figure 7 
illustrates the total estimated area of tapped and young 
rubber trees versus that calculated from the statistical 
data. The two data sets are highly correlated (R2 = 0.8251; 
p ≤ 0.001) but with a slope of 0.6479. This suggests that 
the underestimate was mainly due to underestimating the 
area of young rubber trees.  

5.5. Multi-Regression Analysis  

Multi-regression analysis of data from the sixteen prov-  
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Figure 7. Estimated area of rubber trees more than 7 and 
less than 2 years old versus the total area of rubber trees of 
the same ages calculated from the statistical data for 
Northeast Thailand (15 provinces) in 2006 (p ≤ 0.001)  

inces was conducted on the dependent variable, total area 
of rubber tree growth for each province from the adjusted 
statistical data, against the three independent variables, 
estimated areas of mature rubber trees (AR1), middle-age 
rubber trees (AR2) and young rubber trees (AR3). The re- 
gression equation is listed as follow: 

Rubber_Area_statistics = 0.844 × AR1 + 1.19 × AR2 – 0.58  
         × AR3 + 3057.626 

The regression is significant (p ≤ 0.001) with R2 = 
0.913 and adjusted R2 = 0.892. This result indicates that 
the total area of rubber tree growth from the statistical 
data was well estimated by the Landsat TM data. 
 
6. Summary and Conclusions  
 
Rubber tree growth mapping using 30 m Landsat TM 
data was conducted for Northeast Thailand with a very 
limited number of training samples. The Mahalanobis 
typicality method was used to identify different age rub- 
ber stands. Sixteen out of nineteen provinces were se- 
lected for final statistical analysis and validation. The 
validation was carried out using provincial level statisti- 
cal data. Several conclusions can be drawn from this 
study. First, the Mahalanobis distance based typicality 
model successfully classified rubber stands that were 
typical of known samples from the training sites and 
overcoming the drawback of overestimation. Second, 
NDVI and tasseled cap transformation components to- 
gether with Landsat TM 30 m reflective bands were use- 
ful in differentiating rubber trees from other vegetation 
and crops. Third, at regional and province scales, the  

 
(a) 

 
(b) 

Figure 8. Estimated area of young rubber trees (less than 2 
years old) from Landsat TM data versus the area of new 
rubber trees planted in 2006 from the statistical data for 
Northeast Thailand, (a): for 16 provinces (p = 0.497); and 
(b): for 13 provinces (p ≤ 0.001). 

estimates of mature and middle-age rubber tree growth 
areas using 30 m Landsat TM data were significantly 
close to the provincial statistical data. Therefore the 
typicality approach is a prominent and a robust means of 
mapping species distribution with limited presence in- 
formation. Improvements can be made to map young 
rubber trees more accurately with more high-quality 
training information for model calibration. Future work 
will explore the usefulness of phenological factors for 
enhancing rubber tree growth discrimination.  
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