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Degradation in carbon stocks near tropical
forest edges
Rebecca Chaplin-Kramer1, Ivan Ramler2, Richard Sharp1, Nick M. Haddad3, James S. Gerber4, Paul C. West4,

Lisa Mandle1, Peder Engstrom4, Alessandro Baccini5, Sarah Sim6, Carina Mueller6 & Henry King6

Carbon stock estimates based on land cover type are critical for informing climate change

assessment and landscape management, but field and theoretical evidence indicates that

forest fragmentation reduces the amount of carbon stored at forest edges. Here, using

remotely sensed pantropical biomass and land cover data sets, we estimate that biomass

within the first 500 m of the forest edge is on average 25% lower than in forest interiors and

that reductions of 10% extend to 1.5 km from the forest edge. These findings suggest that

IPCC Tier 1 methods overestimate carbon stocks in tropical forests by nearly 10%.

Proper accounting for degradation at forest edges will inform better landscape and forest

management and policies, as well as the assessment of carbon stocks at landscape and

national levels.
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F
orest clearing accounts for an estimated 12–15% of global
greenhouse gas emissions1 through the annual loss of nearly
200,000 km2 of forest (an area about the size of Uruguay), a

third of which is in the tropics2. These emissions are calculated
through forest carbon inventories3,4, which do not take into
account the decrease in carbon stocks that has been shown to
occur in forests where they interface with converted land5.
Experimental studies across Brazil have shown that biomass is
reduced by between 9 and 50% within 100 m of the forest edge
compared with the forest interior6,7. This is thought to be
responsible for an estimated 600 Mg of carbon loss in the
Amazon alone, and if extrapolated to the entire tropics, forest
fragmentation could account for up to 24% of global carbon
losses due to deforestation8. However, variation in the effect
across different climates and habitats is poorly characterized.
Considering that 70% of the world’s forest area is within 1 km of
the edge9, the extent to which this response is found across the
tropics is of critical importance to carbon trading schemes and
climate change mitigation more broadly.

Recent advances in remote sensing such as finer spatial
resolution and improved algorithms for detecting biomass make
it possible for the first time to assess landscape-level edge effects
in forest carbon across the tropics. Here we calculate the effects of
tropical forest fragmentation and increased area of forest edges on
carbon stocks and document how widespread these effects are
across the world. We illustrate the differences among regions,
variability within regions, as well as factors that explain these
differences. We show that ignoring edge effects can substantially
overestimate carbon stored in fragmented forests, with implica-
tions for forest policy and management.

Results
The scale over which edge effects operate. We find that the scale
of edge effects on forest biomass (defined as the distance between
the forest edge and the point at which 90% of the asymptotic
biomass is reached; A(90) in Fig. 1a) is an order of magnitude
greater than is typically measured in field studies. We detect
410% reduction in above-ground biomass over scales of 1.5 km
from the forest edge on average (Fig. 1b), far exceeding the
100–200 m range over which biomass has previously been
modelled8 and over which both biomass and factors directly
affecting biomass (for example, tree mortality, tree diameter,
plant regeneration, canopy cover) have been measured in the
field5,10. However, previously documented responses of other
factors affecting biomass degradation near forest edges may
explain our observed patterns. Forest edges affect microclimate
(increasing wind speed to 400 m from the edge11), increase plant
desiccation (up to 2.7 km from the edge12) and alter forest
community structure and composition by increasing pioneer
species (to 2 km (ref. 13)) and affecting phenology and
recruitment (up to 5–10 km (ref. 14)). Anthropogenic fires in
forests surrounding agricultural lands can penetrate up to 2.4 km
(ref. 15), which may be exacerbated by other edge-related factors
such as desiccation12. Taken together, the range of edge effects
shown to influence the physical environment and plant
communities support the extent of edge effects on biomass
detected here.

Magnitude of edge effects. Consistent with expectations from
process-based modelling16, we estimate that biomass across the
tropics is reduced an average of 25% within the first B500 m of
the forest edge relative to forest interiors (Fig. 1b). This is several
times greater than the declines documented empirically after
fragmentation in average biomass (8.8% (ref. 6)) or large tree
biomass (5–10% (ref. 17)) within 100 m of the forest edge, but less

than the more extreme differences measured in the field between
intact and degraded forest7. The magnitude of this edge effect
(defined as the percent difference between the average biomass in
forest edge pixels and the biomass predicted at the asymptote of
the regression model; M in Fig. 1a) is on par with the differences
in estimated carbon stocks among different forest types
(for example, IPCC3 estimates 300 Mg ha� 1 of above-ground
biomass in American tropical rainforest compared with
220 Mg ha� 1 in American tropical deciduous forest—a 25%
difference). We therefore conclude that forest configuration can
be as important to assigning values for carbon storage as
differences among regions or ecosystems.

Regional variation in tropical forest edge effects. The magni-
tude and scale of edge effects on forest biomass are consistently
detectable across all continents, despite a large degree of variation
among biomes (Fig. 1c,d) and regionally within biomes (Fig. 2).
Edge effects in dry broadleaf forests are not as strong as those in
moist broadleaf forests (18% versus 29%) and do not penetrate as
far (0.8 versus 1.5 km). This fits with expectation, as dry forests
should be less prone to edge-related desiccation than are moist
forests, while moist forests tend to be denser than dry forests and
thus should be more susceptible to edge-related wind turbu-
lence11. At their strongest, edge effects can reach magnitudes of
460% and extend nearly 5 km into forest, such as across the
moist forests of Veracruz, Mexico; Magdalena Valley, Colombia;
the Albertine Rift in Africa; Madagascar; and the coastal swamps
of Borneo and Sumatra (Fig. 2). R2 values for sub-region models
vary between 0 and 0.83 (with a mean of 0.25) and larger R2

values generally correlate with higher magnitude and scale
estimates18 (Supplementary Fig. 1).

The variation we observe in the magnitude and scale of edge
effects in biomass can be explained in part by physical factors and
human activity (Supplementary Table 1). Dry season length is
negatively correlated with both magnitude and scale of edge
effects, with up to 10% greater magnitude (in Africa) and
extending 41 km further (in the Americas) for each month of a
shorter dry season. Higher elevation is positively correlated with
the magnitude and scale of edge effects in the Americas and
Africa. Furthermore, the proportion of nearby working lands19,
such as croplands, rangelands and populated forests, is associated
with stronger edge effects, both in terms of the magnitude and the
scale, across the tropics. These results correspond well with recent
observations of tree density, which increases with elevation for
tropical dry forests and with precipitation for tropical moist
forests, and declines with human development in both forest
types20.

Discussion
The magnitude and scale of edge effects we report across the
tropics can be used to specify a spatially explicit relationship
between forest management and carbon stocks. This can help
correct the discrepancy between widespread recognition of
carbon edge effects in the scientific literature and their omission
in current policy.

We find that assuming uniform biomass across forest patches
equivalent to biomass levels found in forest interiors over-
estimates total carbon by nearly 20% in forest edge areas
(extending 1.5 km into forests, on average). Accounting for edge
effects would thus reduce the total carbon inventory across the
tropics by 9.4 Pg. This is 30% to nearly three times greater than
previous estimates of how much fragmentation compounds
carbon losses over a 30-year period (that is, 0.11–0.24 Pg per year
or 3.3–7.2 Pg over 30 years across the tropics8), but lower than
suggested by empirical analyses of how much accounting for
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fragmentation can alter estimates of carbon emissions from
deforestation21.

Greater precision in magnitude and scale of edge effects on
biomass will be enabled by greater frequency and resolution of
remotely sensed data products. Such advancements in data will
allow for further analyses probing the intensity of edge effects
over smaller spatial scales or over time. Even at the 500 m scale of
currently available pantropical data, however, the magnitude and
scale of edge effects on biomass averaged over that coarse of an
area are large—and the consequences are substantial enough to
suggest that some revision of current carbon policy is warranted.

National greenhouse gas inventories and other carbon
accounting systems using Tier 1 IPCC methods4 assign a fixed
carbon stock value by vegetation type without adjusting for
edge effects, which likely underestimates the carbon loss due to
forest fragmentation. Better accounting for edge effects in carbon
stocks will improve forest and climate policies for a variety of
applications: landscape zoning and forest management strategies
for effective reforestation, restoration or conservation planning22;
sector, corporate and product level environmental accounting23

and action (for example, zero deforestation commitments24,25,
moratoria26); and emerging carbon markets or carbon trading
programs like REDDþ to secure and enhance the climate
regulation service provided by forests27. In these many decision
contexts, a hectare of forest should not be viewed as exchangeable
with just any other hectare of forest, because the value of that
habitat for carbon storage depends upon the configuration of
forest around it.

The increasing threats to tropical forests stemming from an
expected population of 6 billion people in the tropics by 2,100,
and the expansion of 200 million hectares of agriculture and
construction of 25 million km of roads by 2,050 (ref. 28)
underscore the urgency of understanding the full ramifications of
forest fragmentation and degradation. The magnitude of edge
effects demonstrated here should be given serious consideration
to plan forest conservation and climate mitigation most
effectively.

Methods
Analytic process and data sources. We quantify the reduction in carbon storage
near forest edges using geospatial calculations29 on publicly available global data
sets of pantropical data sets on above-ground biomass30, associated land cover31

and other factors (see ‘Modelling edge effect response to biophysical and human
factors’ section below), implemented by a Python-based computational pipeline32.
The pipeline identifies 10,000 km2 sub-regions in forests across the tropics
(N¼ 2,836), calculates the distance from forest edge for every pixel within those
sub-regions33, and aggregates relevant biophysical and human variables34 per pixel
and per sub-region for further statistical analysis that results in maps of edge effects
across the tropics18,35. Within each sub-region, we construct an asymptotic
regression model between forest biomass and distance from forest edge for all of
the forest pixels (see ‘Modelling biomass density via distance to forest edge’ section
below). Forest edge is defined as any forest pixel adjacent to a non-forest pixel; we
measure the Euclidian distance of every forest pixel (at B500 m resolution) to the
nearest edge. While variation may exist within the area of a pixel, this represents
the finest scale globally available biomass data set. Furthermore, and importantly
for the context of our study, if edge effects exist beyond 500 m, they will be
detectable at this resolution.

The biomass data were created by the Woods Hole Research Center30 and
the associated land cover map comes from the MODIS data set using the
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Figure 1 | Edge effects on tropical forest carbon. Regression model for (a) demonstration purposes, at different scales, A 90ð Þ ¼ � y� 1
3 ln 1� pð Þy1y

� 1
2

� �
,

and for a given magnitude, M¼ y2 exp(�0.232y3)/y1; (b) all pantropical forests; (c) moist broadleaf forests; and (d) dry broadleaf forests. Nonlinear least

squares regression models were based on the entire set of pixels within the forest biomes, with a separate regression derived for each of the 10,000 km2

sub-regions (N¼ 2,836). Plots show only a subset of the points (a random sample of over 1,000,000 pixels for the pantropics and 100,000 for each

biome) to aid in display; grey shading in b–d denotes where the heaviest density of points lay. The curves in each plot are based on the model associated

with the sub-region having the magnitude and scale closest to the weighted average of the whole pantropics (b), the moist broadleaf biome

(c), or the dry broadleaf biome (d). The weighted averages for these regions are listed in the lower right of each panel.
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International Geosphere-Biosphere Programme (IGBP) classification31. This
classification uses 460% tree cover exceeding 5 m height as a threshold for forest
cover36. Woodlands are defined as 40–60% tree cover and wooded grasslands/
savannas have between 10 and 40% tree cover (both exceeding 5 m height). This
designation likely excludes any early successional or highly disturbed forests.

To calculate distance to forest edge, we constructed a raster map based on the
MODIS land cover map whose original forest pixels were transformed into the
shortest Euclidian distance from the current pixel to forest edge. Forest edge
distances are calculated by first masking all global land cover MODIS layers that
correspond to forest land cover IDs, (specifically, evergreen needleleaf forest (1),
evergreen broadleaf forest (2), deciduous needleleaf forest (3), deciduous broadleaf
forest (4) and mixed forest (5)). Distances from edge are calculated for each forest
cell as the Euclidean distance from cell-centre to centre of the nearest non-forest
cell using the Euclidean distance transform in the PyGeoprocessing Python
library29. While variability can be expected in the true edge detected within a 465 m
pixel, forest can be assumed to occupy more than half of the pixel defined as forest
and less than half of any pixel not defined as forest; therefore the distances may be
considered to extend ±232 m.

Assumptions and mechanisms in the underlying data. The distance to forest
edge was calculated using the MODIS land cover type product (MCD12Q1) with
a 17-type classification developed by the International Geosphere-Biosphere
Programme (IGBP). This product has been tested for errors using a 10-fold cross
validation of the 1,860 sites contained in the training data set, which resulted in a
reliability estimate of 72–77% for forest types 1–4, and 53% for type 5, mixed
forest31. However, the vast majority of that error is between the different forest
types; types 1, 2, 3 and 5 have a reliability of 93–98% for correctly identifying
whether or not the land cover type is forest. Type 4, deciduous broadleaf forest, has
a slightly lower reliability for correctly identifying forest (84%), being most

commonly confused (12% of the time) with woody savanna. Error in identifying
forest could lead to bias in the detection of the forest edge, but the deciduous
broadleaf forests are poorly represented throughout the tropics relative to other
forest types. They comprise the plurality of forest cover (45% higher cover than
the rest of the forest types) in only 2% of the regression model sub-regions, and
thus cannot be driving the edge effects seen here.

The underlying biomass data used in this analysis were generated using LiDAR
data from the Geoscience Laser Altimeter System (GLAS) trained with data of
biomass measured on the ground in 283 sites across the tropics; the calculations for
above-ground biomass are based on tree diameter and wood density (hereafter
referred to as the Baccini method30). A similar method (hereafter referred to as
Saatchi method37) added tree height as a third parameter in this calculation. The
two-parameter equation in the Baccini method assumes a non-varying ratio of tree
diameter to tree height, which has been shown to cause a 10–20% overestimate in
total biomass; this bias is strongest in South America, where trees are shorter
compared with global averages of height for trees of the same diameter38. However,
it is unlikely that this bias would impact estimates of edge effects, since the height
to width ratio in trees should not vary within a single forest fragment. Furthermore,
although comparison of the two data sets on a pixel level showed substantial
differences in biomass, the direction of the difference was consistent over the
spatial extents relevant to the detection of edge effects38. A comparison of edge
effects with the method using a three-parameter equation in the Saatchi method
was impractical because of the coarser resolution of the data generated using this
method (1 km for Saatchi compared with 500 m for Baccini). The scale of our
analysis also integrates over some within-pixel variation inherent in MODIS
products, although the Baccini method minimizes much of the reflectance error
arising from adjacent pixels39. Overall, biomass estimated by the Baccini method
accounts for 75% of the variation in the GLAS LiDAR estimates for biomass across
the tropics, and has a root mean squared error of 25, 19 and 24 Mg C ha� 1 for
tropical America, Africa and Asia, respectively30.
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Figure 2 | Magnitude and scale of forest carbon edge effects across the tropics. Edge effect relationships derived for tropical forest within each

10,000 km2 sub-region (N¼ 2,836), with redder colours denoting stronger edge effects both in terms of magnitude of difference (% difference between

biomass at forest edge and in forest interior) and scale of the edge effect (the distance from forest edge at which biomass is within 10% of the asymptotic

biomass, or that seen in the interior of forests; in km).
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The remote-sensing methods for calculating biomass using the Baccini method
are consistent with the physical mechanisms associated with the variation in forest
edges observed here. First and perhaps most obviously detected by remote-sensing,
canopy cover is directly linked to biomass, and reductions in canopy cover from
thinning or degradation can be seen in forest edges. Second, the age structure in the
forest edges is characterized by younger and thinner trees. This leads to lower
biomass overall, detected in remote-sensing through the effect of shadow amount
in the reflectance values in short-wave infrared wavelength region (for example,
bands 6 and 7 of MODIS40). In this wavelength region, the amount of diffuse
radiation is limited and shadows play a significant role, demarcating the forest
structure. Finally, the short-wave infrared bands are also sensitive to water content
in the vegetation, an indicator of general tree health, which is compromised by
pests, disease and desiccation, all shown to be more common in forest edges. Some
biases in biomass have been identified30 for example, biomass tends to be
overestimated in dry sparse forest. This may partially account for the generally
stronger edge effects seen in moist forest, as compared to dry forest, but does not
undermine the existence of the pattern.

It is important to note that by utilizing remote-sensing data, our approach
accounts for above-ground biomass only, and thus does not include considerations
for how below-ground or soil carbon may be impacted by edge effects. This makes
it a less reliable estimate in regions where soil carbon makes up a large proportion
of total carbon stock, such as for peat soils in Southeast Asia.

Modelling biomass density via distance to forest edge. We model the rela-
tionship between biomass density (Mg ha� 1) and distance to forest edge (km)
using a von Bertalanffy asymptotic regression model41 of the form b(d)¼ y1� y2

exp(� dy3), where b is biomass, d is distance to closest forest edge, y1 is the
asymptotic biomass (the point at which the edge no longer has any effect), y1� y2

is the average density at the theoretical forest edge (that is, distance of 0 km), and y3

controls the rate at which the asymptote is reached18. The nonlinear models were
based on the entire set of pixels within the forest biomes and fit using the nls
function in R (ref. 42). These relationships are plotted using the smoothScatter
function of R based on a random sample of over 1,000,000 pixels for the pantropics
and 100,000 for each biome (Fig. 1). Representative asymptotic regression curves
were added to these plots based on the model associated with the 10,000 km2

sub-region having the magnitude and scale closest to the weighted average of the
respective region (that is, the pantropics or biome associated with each plot).

Two different characteristics of the edge effect were then determined:
magnitude and scale. The magnitude (M) is defined as the ratio of the biomass
density at the forest edge relative to the biomass density in the forest core (y1) and
represents the proportional reduction in biomass density when moving from the
core to the edge of the forest; specifically, M¼ y2 exp(� 0.232y3)/y1. Magnitude is
bounded by 0 and 1, with strongest edge effects being closer to 1 and the majority
of the data falling below 0.6 (Supplementary Fig. 1a). The scale of the edge effect
was considered to be the distance (in km) where the average biomass equals p% of
the estimated asymptote. It is calculated as A pð Þ ¼ � y� 1

3 ln 1� pð Þy1y
� 1
2

� �
and is

bounded by 0 and the maximum observed distance; the majority of the data fell
below 2 km (Supplementary Fig. 1b). For the purposes of our study, we used a
threshold of 90% of the estimated asymptotic biomass for this distance, but any
value could be used, and we explored other nearby values, which generally
displayed similar trends. To interpret this, a scale of A(90)¼ 2 implies that at 2 km
from the forest edge, the average biomass density has reached 90% of the
asymptotic density (y1).

Modelling edge effect response to human and physical factors. For each
10,000 km2 sub-region throughout the tropics, we regressed magnitude and scale of
edge effect against other physical and human factors, to investigate potential
mechanisms behind the variation in severity of edge effect. The variables included
were those hypothesized to have an impact on forest biomass and possible
physiological response to fragmentation, and that also were readily available with
global coverage.

Physical factors as predictor variables included: latitude, elevation43,
precipitation44, soil water capacity45 and length of dry season. Dry season was
estimated by stacking 12 months of precipitation rasters44 and for each pixel stack,
counting the number of precipitation pixels that contained o60 mm of
precipitation32. The result is a raster of the same dimensionality as the original 12
month data set whose pixel values contain this approximation of the dry season
length in months.

For human factors, we first included the Intact Forest Landscape layer46 (IFL),
which combines many aspects of human influence (for example, roads,
transmission lines, other infrastructure, human settlements, anthropogenic fires
and so on) and delineates the areas of forest that are free from all human influence
for at least 500 km2. About half of the 10,000 km2 sub-regions intersect with the
IFL layer; magnitude of edge effect is very similar within the intact (overlapping
IFL) and non-intact forest landscapes, but scales over which edge effects operate
are much greater in the intact landscapes (Supplementary Table 2).

We do not test for human influence within the intact forest (because by
definition, these cells do not overlap with populated areas), but restrict the
predictors of edge effect magnitude and scale to the physical variables outlined
above. For the non-intact forests (that is, sub-regions in which the proportion of

IFL¼ 0), we used the following human factors as predictor variables: human
population density47, livestock density48, fire intensity49, lighted area luminosity50

and the proportion of the sub-region covered by different anthromes19. Anthromes
are spatially delineated areas describing the different types and intensities of human
settlement, ranging from remote forests to working landscapes like agriculture and
rangelands, to dense settlements.

Regression models were fit using robust linear methods (via the rlm function in
R) using Tukey Bisquare weights to reduce the impact of outliers. Variable selection
was guided by an exhaustive search in the regsubsets function from the leaps
package in R (ref. 51) based on the Tukey Bisquare weights obtained from the full
model. Additional fine tuning of the model, including obtaining weights specific for
the reduced model, was performed using Bayesian information criterion (BIC) as a
guide. For the intact forest (IFL40) models containing a quadratic term, 95%
bias-correction adjusted bootstrap confidence intervals (with 5,000 replicates as
implemented through the boot function in R) are used to estimate the vertex of the
quadratic curve and the corresponding response value. In the non-intact forest
(IFL¼ 0) models, only anthrome variables that had at least 10% non-zero values
were considered as candidate explanatory variables. R2 values for robust linear
models were approximated based on the weighted response variables (that is,
magnitude or A(90)) and can be interpreted as the percent of variation in the
weighted response that can be accounted for by the model. These outputs have
been archived as a table and geospatial rasters that can be downloaded18 or
explored through a web-app35.

Calculating total carbon in forest edges. To estimate the overall reduction in
carbon stocks due to edge effects, we calculated the sum of the biomass predicted
by our regression model within each 10,000 km2 sub-region and compare it with
the expected biomass if all forest pixels in the region contained the biomass density
found in the interior of the forest (‘interior biomass’ being defined as 90% of the
asymptote). To convert biomass to carbon stock, we multiplied the biomass by
0.47, the IPCC carbon fraction for tropical forest3. We summed the total above-
ground carbon present in forest edges in three ways. (1) To estimate total carbon
predicted by our model, we calculated carbon using the regression model derived
for each 10,000 km2 sub-region, for each forest pixel according to its distance from
forest edge, and summed across all pixels in the A(90) edge areas (defined as above;
the forest pixels within the distance from forest edge where modelled biomass is
o90% of the asymptotic biomass)18. We found the modelled carbon stock within
the edge areas to total 1.912 Mg C ha� 1� 21.466 ha per pixel� 109 pixels, or 4.10
Pg of carbon. (2) To estimate the total biomass predicted by an assumption that all
forest pixels contain the same biomass density as found in forest interiors, we
multiplied the number of pixels in the edge areas by 90% of the asymptotic
biomass. The carbon stock within edge areas according to this method totaled
2.349 Mg C ha� 1� 21.466 ha per pixel� 109 pixels, or 5.04 Pg of carbon. (3) To
check our predictions, we also compared the modelled values to the empirical
values for biomass found in each sub-region. We found empirical biomass in the
edge areas to total 1.847 Mg C ha� 1� 21.466 ha per pixel� 109 pixels, or 3.96 Pg
of carbon. When compared to the 4.10 Pg predicted by the regression model for
these edge areas, these empirical values suggest the model tends to overestimate
biomass by 3.5%.

To determine possible sensitivity to discretization effects, we explored the
importance of the ‘missing biomass’ effect (that is, a comparison of estimates
assuming uniform or edge-related effects on biomass) as a function of distance to
edge. We find that 33% (Supplementary Fig. 2) of tropical forests are within the
A(90) edge areas (extending an average of 1.5 km into forests). Of those A(90) edge
areas, another 30% are directly adjacent to non-forest in the MODIS land cover
data set, and therefore within 465±232 m of the edge. However, the missing
biomass effect extends multiple pixels away from the edge (Supplementary Fig. 3),
thus is not driven exclusively by an artifact of the nearest to edge pixels.

Data availability. Online access for all data and code included in these analyses
are listed in refs 20 and 31–35.
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