
COMMENTARY Open Access

Data and tools to integrate climate and
environmental information into public
health
Pietro Ceccato1* , Bernadette Ramirez2, Tawanda Manyangadze3,4, Paul Gwakisa5,6 and Madeleine C. Thomson1

Abstract

Background: During the last 30 years, the development of geographical information systems and satellites for Earth
observation has made important progress in the monitoring of the weather, climate, environmental and
anthropogenic factors that influence the reduction or the reemergence of vector-borne diseases. Analyses resulting
from the combination of geographical information systems (GIS) and remote sensing have improved knowledge of
climatic, environmental, and biodiversity factors influencing vector-borne diseases (VBDs) such as malaria, visceral
leishmaniasis, dengue, Rift Valley fever, schistosomiasis, Chagas disease and leptospirosis. These knowledge and
products developed using remotely sensed data helped and continue to help decision makers to better allocate
limited resources in the fight against VBDs.

Main body: Because VBDs are linked to climate and environment, we present here our experience during the last
four years working with the projects under the, World Health Organization (WHO)/ The Special Programme for
Research and Training in Tropical Diseases (TDR)-International Development Research Centre (IDRC) Research
Initiative on VBDs and Climate Change to integrate climate and environmental information into research and
decision-making processes. The following sections present the methodology we have developed, which uses
remote sensing to monitor climate variability, environmental conditions, and their impacts on the dynamics of
infectious diseases. We then show how remotely sensed data can be accessed and evaluated and how they can be
integrated into research and decision-making processes for mapping risks, and creating Early Warning Systems,
using two examples from the WHO TDR projects based on schistosomiasis analysis in South Africa and
Trypanosomiasis in Tanzania.

Conclusions: The tools presented in this article have been successfully used by the projects under the WHO/TDR-
IDRC Research Initiative on VBDs and Climate Change. Combined with capacity building, they are an important
piece of work which can significantly contribute to the goals of WHO Global Vector Control Response and to the
Sustainable Development Goals especially those on health and climate action.
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Multilingual abstracts
Please see Additional file 1 for translations of the abstract
into the five official working languages of the United
Nations.

Background
During the last 30 years, the development of geograph-
ical information systems (GIS) and satellites for Earth
observation has made important progress that had made
it possible to monitor weather, climate, environmental
and anthropogenic factors that influence the reduction
or the reemergence of vector-borne diseases (VBDs).
Analyses resulting from the combination of GIS and re-
mote sensing have improved knowledge of climatic, en-
vironmental, and biodiversity factors [1, 2], influencing
vector- borne diseases such as malaria [3, 4], visceral
leishmaniasis (VL) [5–7], dengue [8–10], Rift Valley
fever [11, 12], schistosomiasis [13–16], Chagas disease
[17, 18], and leptospirosis [19, 20]. This knowledge and
products, developed using remotely sensed data, helped
and continue to help decision makers to better allocate
limited resources in the fight against VBDs. Because
VBDs are linked to climate and environment, we present
here our experience during the last 4 years working with
the projects under the World Health Organization
(WHO)/ The Special Programme for Research and
Training in Tropical Diseases (TDR)-International De-
velopment Research Centre (IDRC) Research Initiative
on VBDs and Climate Change [21, 22] to integrate cli-
mate and environmental information into research and
decision-making processes.
The following sections present the methodology we

have developed, which uses remote sensing to monitor
climate variability, environmental conditions, and their
impacts on the dynamics of infectious diseases. We then
show how remotely sensed data can be accessed and
evaluated and how they can be integrated into research
and decision-making processes for mapping risks, and
creating Early Warning Systems (EWS), using two exam-
ples from the WHO TDR projects [21] based on schisto-
somiasis analysis in South Africa and Trypanosomiasis
in Tanzania.

Climate and environmental factors: How do they
help?
To date, much of the debate has centered on attribution
of past changes in disease rates to climate change and the
use of scenario-based models to project future changes in
risk for specific diseases (e.g., for schistosomiasis [23–25]).
Although these can give useful indications, the unavoid-
able uncertainty in such analyses, as well as contingency
on other socioeconomic and public health determinants
in the past or future, limit their utility as decision-support
tools. The output predictive models should also be

validated against field observations as argued by reference
[26] to realize their usefulness in community health and
climate change decision making process especially at the
local level in Africa [15]. For operational health agencies,
the most pressing need is the strengthening of current dis-
ease control efforts to bring down current disease rates
and manage short-term climate risks, which will, in turn,
increase resilience to long-term climate change. The
WHO and partner agencies are working through a range
of programs to (1) ensure political support and financial
investment in preventive and curative interventions to
bring down current disease burdens; (2) promote a com-
prehensive approach to climate risk management; (3) sup-
port applied research, through definition of global and
regional research agendas and targeted research initiatives
on priority diseases and population groups [27].
In this context, the International Research Institute

for Climate and Society (IRI) develops research and
capacity building together with researchers, policy/de-
cision makers, public health practitioners, and com-
munities in lower middle income disease endemic
countries to enable access and use of climate services
to first understand the mechanisms driving changes
in transmission of diseases. We first try to understand
the relationship between diseases and climate by cre-
ating spatial and temporal stratification of the diseases
and population at risk (i.e. risk mapping) [28, 29]. If
a relationship exists between the diseases and climate,
we estimate the seasonality of the disease and timing
of intervention. We then develop frameworks for
EWS to monitor in real time and forecast the risks of
diseases transmission based on climate and environ-
mental factors. Finally, once decision makers have put
in place control measures to mitigate the problem,
climate variability is considered to assess the efficacy
of control measures (i.e. evaluation stage of mitigation
measures). For example, if malaria control interven-
tion scale-up follows an unusually wet and warm
baseline period and malaria incidence declines follow-
ing interventions (during a drier and or cooler
period), it may be tempting to attribute all of the de-
cline in malaria outcomes to the investments in mal-
aria control. Correct attribution is important. As
climate varies naturally over time, it is likely that the
situation will at some point reverse, resulting in an
increase in climate suitability for transmission risk. If
climate is not accounted for, then higher malaria
cases observed may be inappropriately attributed to
program failure [30].

Early warning system
The WHO has developed a framework for creating an
EWS for malaria [31]. The framework is composed of
four components:
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1) Vulnerability assessment, including the assessment
of current control measures, any problems related
to resistance developed by the mosquitoes or the
plasmodium parasites, socioeconomic factors, such
as migration of population, and so on.

2) Climate forecasting, allowing for forecasting, 3–6
months in advance, of the probability of an increase
in precipitation or in temperature, weather
conditions that may lead to an increase in risk for
an outbreak of malaria.

3) Monitoring of climate and environmental factors,
including monitoring of precipitation, temperature,
and the presence of vegetation or water bodies that
would influence the development of mosquitoes.

4) Case surveillance: Monitoring of malaria cases is
either performed at the hospital level or by health
workers by visiting community as active
surveillance. The data are then managed at the
central level by the Ministry of Health.

Evaluation of control measures
The President Malaria Initiative (PMI) uses the Roll
Back Malaria (RBM) partnership–approved methodology
to evaluate whether the deployed interventions have had
an impact on malaria morbidity and mortality. The
methodology requires consideration of contextual (po-
tentially confounding) factors that affect the epidemi-
ology of malaria when using all-cause mortality as the
measure of impact [30]. These factors include increases
in household income, better drug and mosquito net dis-
tributions, improvements in living conditions, and so on.
Although the RBM methodology provides guidance on
how to consider certain confounding factors when deter-
mining their potential impact on mortality, the effect of
climate on malaria prevalence, and therefore mortality,
is much less clear.
In order to conduct the analysis for the above three

components, availability of decision-relevant climate and
environmental information about the past, recent trends,
current conditions, likely future trajectories, and associ-
ated impacts is a prerequisite for climate-informed
decision-making [30].

Accessing quality data through earth
observations
When working on VBDs, decision makers and re-
searchers often face a lack of quality data required for
optimal targeting of the intervention and surveillance.
The results/decisions are critical as they impact on the
lives of many people: “Bad data create bad policies” [32].
Climate data and information—whether station- or

satellite-generated—can increasingly be accessed freely
online [33, 34]. Station data (most commonly observations
of rainfall and minimum and maximum temperatures)

can typically be obtained from a country’s National Me-
teorological and Hydrological Service (NMHS). Depend-
ing on the quality control processes performed by the
NMHS, these data may be of varying quality. However, ac-
cess to station data (especially daily) is not always readily
available especially in Africa. Some of the station data pro-
vided by the NMHS are freely available through the Glo-
bal Telecommunication System but often lack the spatial
coverage needed. Weather and environmental monitoring
satellite sensors gather data that are continuously archived
and cover large areas of the globe. In order for decision
makers to access, visualize, or manipulate these data, they
must first be converted to relevant information and then
shared through an appropriate interface. In many cases,
the raw data may be free, but processing the data appro-
priately requires technical skills and not all interfaces
allow free access to their archived data. Sources for
satellite-generated climate data are varied, and a selection
is provided below. The following are likely to be the most
useful of the freely available satellite-based estimates. They
all differ in the strengths and weaknesses and the best
choice for one situation may not be the best choice
elsewhere.

Precipitation
No satellite yet exists that can reliably identify rainfall
and accurately estimate the rainfall rate in all circum-
stances. Satellite can see the clouds from above that we
see from below, but cloud presence is not a good indica-
tor of rainfall. Not all clouds produce rain, and rainfall
intensity varies from place to place beneath those clouds
that are generating rain. Using a variety of sensors, it is
possible to distinguish raining cloud from non-raining
cloud by estimating:

� Cloud-top temperatures: deep convective clouds
have cold, high tops, and so areas of deep
convection show up as low temperatures. This
method of identification works best in the tropics
and in the mid-latitude summer months when con-
vective rainfall may predominate. However, other
types of rainfall may go unidentified because they do
not form from cold clouds, and there may be false
detection of rainfall from non-raining cold clouds.
Such errors may be substantial in regions near the
coast or in mountainous areas. Although estimates
of rainfall from cloud-top temperatures have good
spatial coverage, high temporal resolution and fre-
quent updates (every 15–30 min), the accuracy is
often poor.

� Cloud thickness: rather than using the temperature
of the cloud top as a proxy for the intensity of deep
convection, the amount of water and ice in the
cloud can be estimated by measuring the amount of
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scattered microwave radiation. These methods offer
a more accurate rainfall estimate, but have coarse
spatial resolution and are updated only twice a day.
Currently, the estimates are least accurate over the
land, where, unfortunately, the information is
needed most.

Techniques are being developed to take advantage
of the better accuracy of microwave sensors and the
better spatial and temporal coverage of infrared sen-
sors by optimally combining the two products. A var-
iety of monitoring products is becoming available
using different ways of combining the products as
follows:

� The Global Precipitation Climatology Project
(GPCP) combines satellite and station data. The
monthly data extend from 1979 onwards, while the
daily product is from 1996 to present.1 The product
is available at 250 km spatial resolution in the IRI
Data Library at: http://iridl.ldeo.columbia.edu/
SOURCES/.NASA/.GPCP/.V2p3/.CDR/.precip/

� The Climate Prediction Center (CPC) Merged
Analysis of Precipitation (CMAP) combines satellite
and station data.2 This product is very similar to the
GPCP but has some differences due to different
algorithms used to estimate precipitation. The
product is available at 250 km spatial resolution in
the IRI Data Library at: http://
iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/
.CPC/.Merged_Analysis/.monthly/.latest/.ver2/
.prcp_est/

� The CPC MORPHing technique (CMORPH)
provides global precipitation estimates at very high
spatial (25 km) and temporal (3 h) resolutions.3 This
product is suitable for real-time monitoring of rain-
fall, provided a long history is not required, as data
are only available from January 1998. The product is
available in the IRI Data Library at: http://iridl.ldeo.-
columbia.edu/SOURCES/.NOAA/.NCEP/.CPC/
.CMORPH/

� The Tropical Rainfall Measurement Mission
(TRMM) provides estimates of precipitation in the
tropics. Monthly aggregates improve the quality of
the data. They are available from January 1998 to
May 31 2015. The product is of good quality if high
spatial (25 km) detail is required and real-time infor-
mation is not critical.4 The product is available in
the IRI Data Library at: http://iridl.ldeo.colum-
bia.edu/SOURCES/.NASA/.GES-DAAC/
.TRMM_L3/.TRMM_3B42/.v7/.daily/.precipitation/
� The Global Precipitation Measurement (GPM)

provides estimates of precipitation globally. They
are available from March 2014 to present [35].

The GPM is an extension of the TRMM rain-
sensing package.5 The product is available at:
https://gpm1.gesdisc.eosdis.nasa.gov/data/
GPM_L3/GPM_3IMERGDF.05/

� The African Rainfall Estimate (RFE) combines
satellite and station data specifically for Africa.
The data are available from 1995 and are useful
for high spatial resolution (11 km).6 The product
is available in the IRI Data Library at: https://
iridl.ldeo.columbia.edu/SOURCES/.NOAA/
.NCEP/.CPC/.FEWS/.Africa/.DAILY/.RFEv2/
.est_prcp/

� The Enhancing National Climate Services
(ENACTS) program combines all available rain
gauge data from the NMHSs of Ethiopia,
Gambia, Ghana Madagascar, Mali, Rwanda,
Tanzania, Kenya and Zambia, with satellite data
for the last 30 years at high spatial resolution.7

Because the ENACTS rainfall products includes
many more observations than are available in the
global products described above the program
generates the best quality data sets available at
the national level. The programme is continuing
to expand to other countries in Africa [36]. The
products are available at the Met Services in each
country where ENACTS has been installed.

� Climate Hazards Group Infrared Precipitation
with Station (CHIRPS) data are produced by the
University of California, Santa Barbara, using a
similar technique developed to create the
ENACTS data but using fewer rain gauges.8 The
product at 5 km spatial resolution is available in
the IRI Data Library at: https://
iridl.ldeo.columbia.edu/SOURCES/.UCSB/
.CHIRPS/.v2p0/.monthly/.global/.precipitation/

Temperature
Air temperature is commonly obtained from synoptic
measurements in weather stations measured at 2-m
high. In Africa, the spatial distribution of weather sta-
tions is often limited and the dissemination of tempera-
ture data is variable, therefore limiting their use for
real-time applications. Compensation for this paucity of
information may be obtained by using satellite-based
methods. The estimation of near-surface air temperature
(Ta) is useful for a wide range of applications in health.
It affects the transmission of malaria [37] in the high-
lands of East Africa. However, the derivation of Ta from
the land-surface temperature (LST) derived from satel-
lite is far from straightforward. In cloudless conditions,
the satellites can measure the temperature of Earth’s sur-
face, but the surface temperature is not necessarily a
good indication of the air temperature. Although night-
time satellite products provide reasonable estimates of
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minimum temperatures, maximum temperature esti-
mates are problematic [38].
Studies have shown that it is possible to retrieve high-

resolution Ta data from the moderate-resolution imaging
spectroradiometer (MODIS) Ts products over different
ecosystems in Africa [38–40].
For temperature-based data, the following data sets

are recommended:

� Land-surface temperature (LST) from MODIS
provides land-surface temperature estimates. The
data are available from July 2002 for Africa and from
March 2000 for South America at a spatial reso-
lution of 1 km. Separate estimates for daytime and
night-time temperatures are available. Maximum
and minimum air temperature estimates can be de-
rived from the land-surface temperatures [39]. The
products are available in the IRI Data Library at:
https://iridl.ldeo.columbia.edu/SOURCES/.USGS/
.LandDAAC/.MODIS/.1km/.8day/.version_005/

Vegetation
Remote sensing can be used to distinguish vegetated
areas from bare soils and other surface covers. Various
vegetative properties can be derived from indices such
as the Normalized Difference Vegetation Index (NDVI),
including but not limited to leaf area index, biomass,
greenness, and chlorophyll. However, quantitative ana-
lyses are highly sensitive to the context of the study loca-
tion, and relationships should be assessed prudently.
Practitioners can access data on vegetation cover

through the following sources:

� Global NDVI is available from 1981 to 2004. The
data set has been shown to be valid in representing
vegetation patterns in certain regions (but not
everywhere) and should be used with caution [41].
The product is available in the IRI Data Library at:
https://iridl.ldeo.columbia.edu/SOURCES/.UMD/
.GLCF/.GIMMS/.NDVIg/.global/.sat/

� Terra MODIS NDVI and Enhanced Vegetation
Index (EVI) are available for 16-day periods from
April 2000 at 250-m resolution. The NDVI is an up-
dated extension to the Global NDVI. The EVI is an-
other index used to estimate vegetation that can
complement the NDVI [42]. The products are avail-
able for different regions of the world in the IRI
Data Library at: https://iridl.ldeo.columbia.edu/
SOURCES/.USGS/.LandDAAC/.MODIS/
.version_006/

Water bodies and inundation products
Using LANDSAT images at 30-m spatial resolution, it is
possible to map small water bodies where mosquitoes

will breed and transmit diseases such as malaria, dengue
fever, chikungunya, West Nile fever and where snails
breed transmitting schistosomiasis [16, 43]. By combin-
ing the middle-infrared channel (which is sensitive to
water absorption), the near-infrared channel (which is
sensitive to bare soil and vegetation canopy), and the red
channel (which is sensitive to chlorophyll absorption), it
is possible to map water bodies in blue, vegetation in
green, and bare soils in brown [44]. Using a technique
developed by Pekel et al. [44], it is possible to map the
water bodies by transforming the red–green–blue color
space (represented by the middle infrared, near- infrared
and red channels) into a hue–saturation–value space
that decouples chromaticity and luminance. Global map
of water at high special resolution based on LANDSAT
for the last 30 years are now made available on-line at:
https://global-surface-water.appspot.com/ [45].
Global maps of inundated area fraction are also de-

rived at 25-km scale from remote sensing observations
from multiple satellite sources [46], focusing on data sets
from active/passive microwave instruments (European
Remote Sensing scatterometer, QuikSCAT, Special Sen-
sor Microwave/Imager, and Advanced Microwave Scan-
ning Radiometer). Those products are used to map flood
events and their impacts on malaria and leishmaniasis in
South Sudan [7].
Practitioners can access data on water bodies through

the following sources:

� Terra MODIS middle-infrared, near-infrared, and
red reflectances are available for 16-day periods from
April 2000 onward at 250-m resolution. The prod-
ucts are available in the IRI Data Library at: https://
iridl.ldeo.columbia.edu/SOURCES/.USGS/.Land-
DAAC/.MODIS/.version_006/

� LANDSAT middle-infrared, near-infrared, and red
reflectances are available every 16 days at 30-m
spatial resolution. The products can be accessed
using Google Earth Engine (example: https://
code.earthengine.google.com/
b4a5ea6ac0a8fe5520ec039c98abaff5)

� Inundation fraction products are available for daily,
6-day, and 10-day periods for the entire globe at 25-
km spatial resolution [47]. The products are available
through the IRI Data Library at: https://iridl.ldeo.co-
lumbia.edu/SOURCES/.NASA/.JPL/.wetlands/

Data accessibility
Over the past 30 years, the field of remote sensing has
grown to include numerous national, intergovernmental,
and private organizations that freely provide
user-friendly high spatial and temporal resolution data
sets. However, the ease of access should not be mistaken
for ease of analysis as the data sets are still complex and
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require complex evaluation, especially when applied to
decision-making.
The IRI has developed various tools and provided cap-

acity building to improve data accessibility and analysis
for decision makers and interdisciplinary researchers
alike. A Climate Data Library was built as an integrated
knowledge system to support the use of climate and en-
vironmental information in climate-sensitive health
decision-making. Initiated as an aid to climate scientists
to do exploratory data analysis, it has expanded to pro-
vide a platform for transdisciplinary researchers focused
on topics related to climate impacts on society.

IRI data library
The IRI Climate Data Library is organized as a collection
of both locally held and remotely held data sets, de-
signed to make the data more accessible for the library’s
users. Data sets in the library come from many different
sources in many different formats [33].
The IRI Climate Data Library can be used via two dis-

tinct mechanisms that are designed to serve different
communities. Expert Mode serves the needs of oper-
ational practitioners and researchers that have an
in-depth knowledge of the functionality of the system
and are able to customize it to their own specific needs
(see: http://iridl.ldeo.columbia.edu/SOURCES/#info).
The Data Library programming language (Ingrid) can be
used by advanced users to develop custom functions and
perform tailored analyses (see: http://iridl.ldeo.colum-
bia.edu/dochelp/StatTutorial/index.html). Expert Mode
allows users with programming skills a very extensive
level of personalized functionality. Online tutorials, ex-
amples, and function definitions are part of the Data Li-
brary [33].

Map rooms
In contrast to Expert Mode, the Map Rooms (see: http://
iridl.ldeo.columbia.edu/maproom/) provide easy access
to point-and- click map-based user interfaces that are
built on Data Library infrastructure. The Map Rooms
are the result of collaborative negotiations around infor-
mation needs and make specific data and products for a
region or time period available for a specific purpose to
specific users and decision makers. The data and maps
in these Map Rooms are available for quick and easy
download to the user’s desktop.

IRI climate data library archives and near-real-time updates
Global climate observations by ground stations, satellites,
and modeled estimates of climatic conditions compose
the vast majority of the Data Library’s data archive. An ex-
tensive menu of maps and analysis used to monitor
current global and regional climate, as well as historical
data, are available from a wide range of sources including

National Aeronautics and Space Administration (NASA),
National Oceanic and Atmospheric Administration
(NOAA), Climatic Research Unit University of East Anglia
(CRU- UEA), World Meteorological Organization (W
MO), European Centre for Medium-Range Weather Fore-
casts (ECMWF), Goddard Institute for Space Studies
(GISS, and so on [32]. From the Map Rooms, it is possible
to readily access and download the publicly available data
sets being viewed, including station, atmospheric, and
oceanic observations and analyses, model-based analyses,
and forecasts, as well as land-surface and vegetation
information.
The near-real-time data sets are updated by automated

software that retrieves the data as soon as it is available
on the originating site. For instance, MODIS satellite
data will be available in the IRI Climate Data Library
within a day after processing is complete at the NASA
data center.

Downloading data library data and products
A Data Library user can download both images and data
onto a desktop workstation. Data can be downloaded in
standard ASCII and binary formats, Excel and R tabular
formats, GIS formats, netCDF files, and directly to appli-
cation software (such as GrADS and MATLAB®) that
support the OPeNDAP data transfer protocol [48]. Over
the last decade, OPeNDAP has emerged as a community
standard for machine-to-machine data access and trans-
fer and is widely used where data sharing is involved, for
example, with the climate change scenarios developed as
part of the Coupled Model Intercomparison Project for
the Intergovernmental Panel on Climate Change [49].
Images, including maps, produced in the Data Library

can be delivered to the user’s desktop in standard graph-
ics formats like PostScript, JPEG, and PDF. The maps
can also be made available in WMS, KML, and GIS for-
mats that feed directly into applications such as Google
Earth, Google Maps, or ArcGIS. Any analysis or data
download done by the user is represented in a URL that
can be saved to the user’s desktop. This URL can be
shared with collaborators to repeat the analysis. The
URL can be incorporated into a script that is run period-
ically when either environmental or public health data
sets are updated.
The IRI Data Library has enabled decision makers to

have fast and easy access to the different Earth Observa-
tion products mentioned in the section “Improving Data
Quality and Accessibility” and to analyze the data to
understand the seasonality and trends of climate in rela-
tion to health.

Google earth engine
Google Earth Engine (GEE) is a cloud-based platform for
planetary-scale geospatial analysis that brings Google’s
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massive computational capabilities to bear on a variety of
high-impact societal issues including deforestation,
drought, disaster, disease, food security, water manage-
ment, climate monitoring and environmental protection.
It is unique in the field as an integrated platform designed
to empower not only traditional remote sensing scientists,
but also a much wider audience that lacks the technical
capacity needed to utilize traditional supercomputers or
large-scale commodity cloud computing resources [34].
GEE makes it easy to access high-performance com-

puting resources for processing very large geospatial
datasets, without having to suffer the IT pains currently
surrounding either. Additionally, and unlike most super-
computing centers, Earth Engine is also designed to help
researchers easily disseminate their results to other re-
searchers, policy makers, NGOs, field workers, and even
the general public. Once an algorithm has been devel-
oped on Earth Engine, users can produce systematic data
products or deploy interactive applications backed by
Earth Engine’s resources, without needing to be an ex-
pert in application development, web programming or
HTML.

Integration of climate and environmental data
within WHO/TDR projects
During the five years of the WHO/TDR-IDRC Research
Initiative on VBDs and Climate Change project [21], we
have been collaborating with the five teams to provide
training on how to integrate the climate and environ-
mental data using the tools and methodologies described
above. More in depth descriptions of the five projects
that encompassed malaria, trypanosomiasis, Rift Valley
Fever and schistosomiasis are provided in this special
issue journal and additional peer review publications
such as in reference [50]. Here we present succinctly
how climate and environmental data from the IRI Data
Library and Google Earth Engine were integrated into
VBD.

Schistosomiasis
In the uMkhanyakude district of South Africa, Manyan-
dadze et al. [16] discovered that the snails carrying and
transmitting schistosomiasis are most likely to be found
where there is slow moving surface water with slightly
higher-than-normal temperatures. But the snails can also
hibernate when the pools get dry and then repopulate
during and after the rainy season. Such pools are often
where people enter and then come into contact with the
parasite.
Using a new model, Manyandadze tested variables de-

rived from the IRI Data Library such as air temperature,
rainfall, water velocity (as estimated by the slope of
ground) and soil pH to try to predict where the snails
would be found, and then compared those findings with

sampling of snails in the field. They found that the best
predictor of where snails are present is a measure called
the Normalized Difference Water Index (NDWI), which
estimates the presence of surface water bodies based on
satellite data and a mathematical formula.
The mapping techniques are particularly useful in

areas with distinct dry and wet seasons, where tempor-
ary bodies of water may form in some years but not
others, and sometimes in different locations. The maps
(Fig. 1) produced by the model can help health workers
narrow-in on where the risk of schistosomiasis may be
high. With that information, they can take actions such
as stockpiling medications that interrupt the parasite’s
cycle, controlling snail populations and launching aware-
ness campaigns. Without such a model, much more time
and resources must be spent to send surveyors to iden-
tify areas of probable risk.

Trypanosomiasis
Tackling Sleeping Sickness in Maasai Communities is
one of the five projects supported by the WHO/
TDR-IDRC Research Initiative on VBDs and Climate
Change [21]. Using GEE, we developed applications for
Climate/Environment/Health allowing researchers and
the Maasai community to access global precipitation
datasets, temperatures, vegetation and water bodies at
high spatial resolution from LANDSAT and Sentinel 2,
floods from Sentinel 1 (Radar Systems) and very high
spatial resolution datasets (QuickBird, Ikonos). It is now
possible to integrate algorithms to access satellite im-
ages, create products and integrate them with popula-
tion datasets, infrastructure from high spatial resolution
images and disease data (e.g., on trypanosomiasis), see
Fig. 2.
In addition to using GEE, we developed an applica-

tion on smartphone that is used to access and analyze
satellite images on precipitation, temperature, water
bodies (based on LANDSAT images) and integration
with local data on the presence of the tsetse flies and
trypanosomiasis. This new smartphone application
allowed users to access high spatial resolutions images
and extract time-series analysis for mapping the risks
of trypanosomiasis in Maasai villages in northern
Tanzania (Figs. 3 & 4).
In addition to developing smartphone applications

to integrate and analyse health data in conjunction
with climate and information, we can develop smart-
phone applications to collect health data (geo-refer-
enced with pictures of the environment and breeding
sites). This application is based on the Open Data Kit
(ODK) which is a free open-source set of tools which
help organizations author, field, and manage mobile
data collection solutions. ODK provides an out-of-
the-box solution for user to:
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Fig. 1 Seasonal suitable and not suitable habitats for two snail species in Ndumo area of uMkhanyakude district, South Africa based on Maxent
model using climatic and environmental factors: (a) Bulinus globosus in cold/dry season (June to August). (b) Biomphalaria pfeifferei in cold/dry
season (June to August). (c) Bulinus globosus in hot/dry season (September to November). (d) Bulinus globosus in post rainy season (March to
May) (adapted from Manyangadze et al. 2016 [16])

Fig. 2 Very high spatial resolution image with location of water bodies detected in January 2017 (blue color), location of tsetse flies (red dots)
and location of trypanosomiasis (green dots)
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� Build a data collection form or survey;
� Collect the data on a mobile device and send it to a

server and;
� Aggregate the collected data on a server and extract

it in useful formats.

Socio-economic and health surveys with GPS locations
and images can be ingested by ODK and create decision
support for clinicians for building multimedia-rich na-
ture mapping tools.

Conclusions
During the last 30 years, much progress has been made
in incorporating remote sensing and GIS into decision

processes that can help Ministries of Health and re-
searchers in fighting vector-borne diseases. The exam-
ples provided in this article show how climatic and
environmental factors can be monitored using remote
sensing and integrated into decision-making process for
mapping risks, creating EWS, and evaluating the impacts
of control measures. Until recently, image and process-
ing costs prevented local decision makers from imple-
menting remote sensing decision-support systems on a
large scale. More recently, computer processing, data
storage facilities, and easy access to remotely sensed
products have become available at low cost, and high
spatial resolution images have become accessible free of
charge. Processing tools are also being made available to
the user community at no cost (e.g., IRI Data Library,
Google Earth Engine). These developments have paved
the way toward making countries more receptive to the
implementation of remote sensing systems [32].
The tools presented in this article have been success-

fully used by the projects under the WHO/TDR-IDRC
Research Initiative on VBDs and Climate Change. Com-
bined with capacity building, they are an important piece
of work which can significantly contribute to the goals
of WHO Global Vector Control Response and to the
Sustainable Development Goals (SDGs) especially those
on health and climate action.

Endnotes
1GPCP provides global monthly 2.5° and daily 1° rain-

fall estimates
2CMAP provides products at a spatial resolution of

2.5° with 5-day and monthly aggregations since 1979.

Fig. 3 Dissemination of climate data derived from earth observation to local communities through the IRI Data Library and Google Earth Engine

Fig. 4 Demonstration of the climate, environmental and
trypanosomiasis interface on smartphone to the Maasai community
in Arusha, Republic of Tanzania (photo used with permission from
Paul Gwakisa)
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3CMORPH provides precipitation analyses at 8-km
spatial resolution and 30-min temporal resolution.

4TRMM provides precipitation data at 0.25°.
5GPM provides precipitation data at 0.1°.
6RFE has an 11-km spatial resolution and a 10-day

temporal resolution
7ENACTS uses a spatial resolution of 10 km, and

10-day and monthly products are available for the last
30 years. The approach is now being considered for ex-
pansion into other countries in Kenya, Uganda, and
West Africa

8The CHIRPS data cover the African continent at 5
km on a daily basis for the last 30 years and at 5 km
every 10 days and on a monthly basis for the entire
globe. The data are available via the IRI Data Library at:
http://iridl.ldeo.columbia.edu/SOURCES/.UCSB/
.CHIRPS/.v1p8/

Additional file

Additional file 1: Multilingual abstracts in the five official working 331
languages of the United Nations. (PDF 659 kb)
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