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Abstract: Savannakhet Province, Lao People’s Democratic Republic (PDR), is a small 

area that is connected to Thailand, other areas of Lao PDR, and Vietnam via road No. 9. 

This province has been increasingly affected by carbon dioxide (CO2) emitted from the 

transport corridors that have been developed across the region. To determine the effect of 

the CO2 increases caused by deforestation and emissions, the total above-ground biomass 

(AGB) and carbon stocks for different land-cover types were assessed. This study 

estimated the AGB and carbon stocks (t/ha) of vegetation and soil using standard sampling 

techniques and allometric equations. Overall, 81 plots, each measuring 1600 m
2
, were 

established to represent samples from dry evergreen forest (DEF), mixed deciduous forest 

(MDF), dry dipterocarp forest (DDF), disturbed forest (DF), and paddy fields (PFi).  

In each plot, the diameter at breast height (DBH) and height (H) of the overstory trees were 

measured. Soil samples (composite n = 2) were collected at depths of 0–30 cm. Soil carbon 

was assessed using the soil depth, soil bulk density, and carbon content. Remote sensing 

(RS; Landsat Thematic Mapper (TM) image) was used for land-cover classification and 
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development of the AGB estimation model. The relationships between the AGB and RS 

data (e.g., single TM band, various vegetation indices (VIs), and elevation) were 

investigated using a multiple linear regression analysis. The results of the total carbon 

stock assessments from the ground data showed that the MDF site had the highest value, 

followed by the DEF, DDF, DF, and PFi sites. The RS data showed that the MDF site had 

the highest area coverage, followed by the DDF, PFi, DF, and DEF sites. The results 

indicated significant relationships between the AGB and RS data. The strongest correlation 

was found for the PFi site, followed by the MDF, DDF, DEF, and DF sites. 

Keywords: above-ground biomass; carbon stock; Landsat; vegetation indices;  

image classification 

 

1. Introduction 

Tropical forest lands are a natural forest type that is an important source of biodiversity, food,  

and carbon storage. Tropical forests comprise the largest proportion of the world’s forests at 44% [1];  

they also contain one of the largest carbon pools and have a significant function in the global carbon 

cycle. Forests store carbon and contain approximately 80% of the total above-ground organic carbon 

and 40% of the total below-ground organic carbon worldwide. Deforestation and forest degradation 

contribute 15%–20% of global carbon emissions, and most of this contribution comes from tropical 

regions. Approximately 60% of the carbon sequestered by forests is released back into the atmosphere 

via deforestation. Scientists have also determined that tropical deforestation releases 1.5 Gt of carbon 

into the atmosphere each year [2]. Deforestation and forest degradation are the major sources of 

greenhouse gas (GHG) emissions in most tropical countries. The Intergovernmental Panel on Climate 

Change (IPCC) [3] estimated that the global carbon dioxide (CO2) emissions from land-use change, 

averaged over the 1990s, ranged between 0.5 and 2.7 Gt C∙a
−1

, with an average of 1.6 Gt C∙a
−1

. 

Forest biomass is an indicator of carbon sequestration. The amount of carbon sequestered by a forest 

can be inferred from its biomass accumulation because approximately 50% of forest dry biomass is 

carbon [4]. The majority of biomass assessments are performed for the above-ground biomass (AGB) 

of trees because this biomass generally represents the greatest fraction of the total living biomass in a 

forest and does not pose significant logistical problems during field measurements [3]. Estimating 

above-ground forest biomass is the most important step in measuring the carbon stocks and fluxes 

from tropical forests and helps to determine the contribution of forests to the global carbon cycle. 

Moreover, estimates of AGB can also be used to predict root biomass, which is generally estimated to 

be 20% of the above-ground forest biomass [5]; this figure was based on a predictive relationship 

determined from an extensive literature review [6]. In addition, dead wood or litter carbon stocks 

(e.g., downed trees, standing dead or broken branches, leaves) are normally presumed to correspond to 

10%–20% of the above-ground forest carbon stock in mature forests [7]. 

Deforestation and forest degradation continue to be an important environmental problem in Lao 

People’s Democratic Republic (PDR). In the 1950s, forests covered approximately 70% of the land 

area in this country; however, by 1992, the forest coverage had declined to approximately 47% of the 

http://dict.longdo.com/search/pointer
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total land area as a result of population expansion, agricultural cultivation, and timber exports [8].  

In 2005, land-use change and forestry in Lao PDR, including deforestation and land clearing, were 

responsible for 26% of the GHG emissions, and transport was responsible for 9% of the emissions. 

These emissions are expected to increase annually. The data from the Lao PDR forest department 

assessments of the forest land cover in 1982 and 2010 showed that forest with more than 20% crown 

cover decreased from 6.04 billion to 5.15 billion tons over this 28-year period; moreover, the total 

volume lost between 1982 and 2010 was approximately 148 million m
3
. As forests can contribute to 

offsetting emissions, the current forest areas must be measured to ensure their protection. 

Traditional biomass assessment methods based on field measurements are the most accurate methods; 

however, they are difficult to conduct over large areas and are costly, time consuming, and labor 

intensive [9]. Recently, remote-sensing (RS) procedures have been applied to and established for 

natural resources management. Currently, RS is widely used to collect information regarding forest 

AGB and vegetation structure as well as to monitor and map vegetation biomass and productivity on 

large scales [10–12] by measuring the spectral reflectance of the vegetation [13]. However, optical RS 

does not directly assess above-ground forest biomass, and radiometry is sensitive to vegetation 

structure (i.e., crown size and tree density), texture, and shadow, which are correlated with AGB, 

particularly in the infrared bands [14,15]. RS data are now considered to be the most reliable method 

of estimating spatial biomass in tropical regions over large areas. RS technology has been applied to 

biomass assessment in many studies [10,16,17] because it can obtain forest information over large  

areas at a reasonable cost and with acceptable accuracy based on repetitive data collection with 

minimal effort [13]. 

In general, estimating the AGB in tropical forests is a challenging task because of their complex 

forest structure. Many studies have shown that the method of determining relationships between field 

measurements and RS data and then extrapolating these relationships over large areas is very useful [18]. 

To determine the relationship between above-ground field biomass and RS data, researchers have  

used linear regression models with or without log transformations of field biomass data [19,20] and 

multiple regressions with or without stepwise selection [13,20–22]. Artificial neutral networks [20,23], 

semi-empirical models [24], nonlinear regression [25], and nonparametric estimation techniques 

(e.g., k-nearest neighbor and k-means clustering) have also been used [13,26]. Although no model can 

determine this complex relationship absolutely, researchers continue to use multiple regression models 

as one of the best options. Vegetation index models are generally used to estimate biomass in many 

studies [20,27,28]. Vegetation indices (VIs) are calculated from mathematical transformations of the 

original spectral reflectance data and can be used to interpret land vegetation cover [29]. VIs are 

applied to remove the variations caused by spectral reflectance measurements while also measuring the 

biophysical properties that result from the soil background, sun view angles, and atmospheric 

conditions [13]. Many previous studies have shown significant positive relationships between biomass 

and VIs [6,30,31]; however, other studies have shown poor relationships [30,31]. 

Many methods can be used to map and estimate above-ground forest biomass for different  

land-cover types; one such method is the use of Landsat imagery (medium-resolution satellite images) 

to estimate the attributes of forests through direct correlations or stepwise regression analyses with 

spectral bands, band ratios, or VIs [11,27,32]. In general, land-cover change mapping cannot be 

accurately performed based on low- and medium-resolution satellite images. However, the use of  
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high-resolution images to map large areas is expensive and requires a high degree of technical skill for 

data interpretation; these issues are problematic in developing countries. Landsat is commonly used for 

many applications because it can be obtained for free or at a low cost. A combination of many data 

sources (e.g., forest inventory, land use, elevation, and RS data) can be used to predict vegetation 

variables over large areas [33]. A hybrid supervised/unsupervised classification approach coupled with 

a geographical information systems (GIS) analysis has been employed to improve land use/cover 

mapping for Landsat data [33–35]. In tropical regions, forest plot-based field measurements have been 

correlated with RS data, and these measurements have been used to estimate that carbon stocks are 

limited, particularly in Southeast Asian countries, such as Lao PDR. The present study seeks to 

characterize the carbon stock of tropical forest types using forest-plot-based field measurements and 

RS data to develop a simple RS-based methodology. The field-based measurement and RS approach 

might also help to improve forest carbon estimation in order to reduce emissions resulting from 

deforestation and forest degradation (REDD+) and to design incentive programs; furthermore,  

this approach might improve forest management with regard to climate-change mitigation. 

2. Methods 

2.1. Study Area 

Savannakhet Province is located in the southern region of Lao PDR, lying between 16° and 17° 

north latitude and between 105° and 106° east longitude (Figure 1). This province covers 21,774 km
2
, 

and its topography is lowland with a slight slope from east to west to the Mekong River. Savannakhet 

Province contains the largest rice field area in the country [36], and the dominant occupation is 

farming. Savannakhet is connected to Thailand, other areas of Lao PDR, and Vietnam via road No. 9, 

and it is linked to China and Cambodia via road No. 13. 

Savannakhet has a tropical monsoon climate, and the average annual temperature is 26.3 °C.  

The landscape varies from low-lying floodplains to foothills and mountains. The average annual 

rainfall is approximately 1440 mm and is significantly higher in the eastern upland region of the 

province than in the lower areas. Rice is a major crop in this region. Lao PDR relies on forest products 

because it has a low population density and a large forested area. Forest products meet a wide range of 

subsistence needs, provide opportunities for income generation, and are an important source of export 

income [37]. Savannakhet has large forested areas, including natural protected areas (Phou Xang Hae, 

Dong Nadet, and Don Phou Vieng) and a natural production forest (Dong Sithouane). In 2000, forest 

land covered approximately 70% of the province. Forestry is the second most important economic 

sector, after agriculture, and a key source of export income for Savannakhet [37,38]. However, Lao 

PDR is aware of the recent decline of its natural resources due to an increasing population, 

encroachments on its forests for settlement, agricultural cultivation, illegal logging, and forest fires.  

  

http://www.ecotourismlaos.com/phouxanghae.htm
http://www.ecotourismlaos.com/dongphouvieng.htm
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Figure 1. The location of the study area inventory plots in Savannakhet Province, Lao PDR. 

 

2.2. Field Data Collection 

The study site is located in a tropical forest containing various forest types: dry evergreen forest 

(DEF), mixed deciduous forest (MDF), dry dipterocarp forest (DDF), disturbed forest (DF), and paddy 

fields (PFi). A total of 81 field plots were located within the Savannakhet region, including 11, 10, 20, 29, 

and 11 plots of DEF, MDF, DDF, DF, and PFi, respectively (see Figure 1). The sample plots were 

primarily established along road No. 9, from 19 September to 9 October 2011. Each plot had 

dimensions of 40 × 40 m. Sampling quadrats (square plots) with dimensions of 40 × 40 m, 10 × 10 m, 

4 × 4 m, and 1 × 1 m were nested within each other. The design of the plots was optimized to ensure 

that the area on the ground occupied at least one full Landsat TM image with a 30-m pixel resolution. 

For the 10 × 10 m quadrat (tree layer), all of the trees in all of the subplots with a diameter at breast 

height (DBH) equal to or greater than 4.5 cm and a height (H) greater than 1.3 m above the surface 

level were measured [13]. Information concerning the tree species, including the scientific names of 

the trees, was collected. The sapling layer of trees with a DBH less than 4.5 cm and a H greater  

than 1.3 m was measured in the 4 × 4 m quadrats of all the subplots (see Figure 2a,b). Tree species 

information was collected. The undergrowth layer, including seedlings, shrubs, climbers, grasses, litter 

(twigs and leaves), and paddy rice, was collected from four 1 × 1 m quadrats (Figure 2a,b). For this 

analysis, the undergrowth layer was weighed and dried. Soil samples were collected from two points at 

each site for bulk density and soil carbon content analyses for DEF, MDF, DDF, DF, and PFi. 
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Figure 2. (a) The 40 × 40-m quadrat design; (b) nested quadrats for biomass diversity and 

soil analysis. 

 

2.3. AGB and Soil Carbon Analysis from Field Data 

Forests and paddies with trees are the major types of land cover in Lao PDR. DBH and H values 

were recorded for all trees (DBH value ≥ 4.5 cm) and saplings (DBH value < 4.5 cm), and the AGB 

was estimated using the allometric equation shown in Table 1 for each land-cover type [39–42]  

for DEF, MDF, and DDF. All of these allometric equations can represent forest types in this study 

area. They were developed for vegetation in Thailand and have been used successfully in Thailand, 

which has similar vegetation characteristics to those of Lao PDR. The estimate of the sapling AGB 

was obtained from the allometric equation for DEF, MDF, and DDF. These equations are 

advantageous because they include a H-adjusted function. Additionally, many studies have used them 

to examine forest biomass for carbon stock assessment in Thailand [39–44]. 

Table 1. Equations used for above-ground biomass (AGB) assessment. 

 Land-Cover Type Allometric Equation Source 

Tree DEF Ws = 0.0509 DBH
2
H 

0.919
 

Tsutsumi et al. [39] 
  Wb = 0.00893 DBH

2
H 

0.977
 

  Wl = 0.0140 DBH
2
H 

0.669
 

   

 MDF Ws = 0.0396 DBH
2
H 

0.9326
 

Ogawa et al. [40]  DDF Wb = 0.003487 DBH
2
H 

1.0270
 

  Wl = (28.0/Wtc + 0.025)
−1

 

Sapling 

DEF 

Ws = 0.0702 DBH
2
H 

0.8737
 

Visaratana and Chernkhuntod 

[41] 
 Wb = 0.0093 DBH

2
H 

0.9403
 

 Wl = 0.0244 DBH
2
H 

1.0517
 

 MDF Ws = 0.0893059 DBH
2
H 

0.66513
 

Suwannapinunt [42]  DDF Wb = 0.0153063 DBH
2
H 

0.58255
 

  Wl = 0.0000140 DBH
2
H 

0.44363
 

 Ws = Biomass of stem (kg) 

 Wb = Biomass of branch (kg) 

 Wl = Biomass of leaves (kg) 

 Total biomass (kg) = Ws + Wb + Wl) 

 DBH = Diameter at breast height (cm) 

 H = Tree height (m) 

Figure 2. (a) The 40x40-m quadrat design; (b) nested quadrats 

for biomass diversity and soil analysis. 
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2.3. AGB and Soil Carbon Analysis from Field Data 
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The undergrowth biomass (vegetation with a H value < 1.30 m), including seedlings, shrubs, 

climbers, grasses, litter (twigs and leaves), and paddy rice, was estimated directly using the harvesting 

method. The fresh weight was measured, and the dry weight was determined by oven-drying at 70 °C 

for at least 48 hours in the lab before weighing. The total dry weight of the biomass was calculated 

from the fresh weight [45] using the equation below: 

Total DW (kg∙m
−2

) = 
)()(

))()((
2mSampleareagWSubsampleF

gWSubsampleDkgTotalFW




 (1) 

where DW is the dry weight and FW is the fresh weight. 

The AGB was converted to carbon stock by multiplying 0.47 as a conversion factor [1,3] using the 

equation below:  

Above-ground carbon stock = 0.47AGB  (2) 

Soil was collected at two time points from two land-cover types for both the bulk density (g/cm
3
) 

and soil carbon content (%) analyses at a depth of 30 cm (top soil) [46]. A soil auger was used to 

collect the soil sample. Bulk density was calculated using Equation (3) [47,48], and soil carbon content 

was calculated via air drying and then baking at 900 °C using an NC-Analyzer Model Sumigraph-NC 

90A. The soil carbon content was calculated by multiplying the volume percentage of the soil organic 

carbon in the top soil horizon by the soil bulk density value (g/cm
3
) and then multiplying the result by 

the carbon content percentage. As suggested by Black [49], the soil carbon content (t/ha) was 

calculated using Equation (4). The total carbon stock was calculated using Equation (5). 

Bulk Density (g/cm
3
) = 

eTotalVolum

soil dried-oven of Mass
 (3) 

Soil carbon (t/ha) = 3Soil depth (cm)  soil bulk density (g/cm )  carbon content (%)      (4) 

Total carbon stock = carbon soil stock carbon  ground Above   (5) 

2.4. Land-Cover Classification Method 

Two cloudless scenes (12648 and 12649) of Landsat TM images taken on 26 August 2009, were 

downloaded from the U.S. Geological Survey (USGS) [50]. The image was georectified to the 

universal transverse mercator (UTM) projection using image registration. All Landsat Thematic 

Mapper (TM) bands (except the thermal bands) were stacked, and the image was subset for the 

Savannakhet area as shown in Figure 1. The land-cover map was classified to estimate the biomass and 

carbon stock for each class using Erdas software. The classifications including DEF, MDF, DDF, DF, 

and PFi with trees were analyzed using a hybrid classification technique that uses both supervised and 

unsupervised classifications with GIS [34,51]. The hybrid classification involved developing training 

patterns via the use of an unsupervised classification followed by a supervised classification [51].  

For the unsupervised classification, a K-means clustering algorithm was used to search for natural 

groups of pixels called clusters, which were located in the data by assessing the relative locations of 

the pixels in the feature space for separations between vegetation and non-vegetation classes. The 

vegetation classes were also identified for field verification in the study area. The maximum likelihood 

method for the supervised classification was applied using analyst-defined training areas to determine 
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the characteristics of each land-cover type. Clouds and shadows were filled using nearby pixels, 

Google Maps, land-use Shapefile data, and land-cover classifications from older and newer images. As 

the resolution of Landsat images is moderate (30 × 30 m), the use of a combined hybrid classification 

technique improved the accuracy of the land-cover classification [34,51]. An accuracy assessment was 

applied to evaluate the quality of the land cover map [34]. The accuracy of each classification was 

assessed by comparing the classification with the reference data. In all, 81 plots were collected.  

Of these plots, 41 were used for image classification; another 40 plots were used as reference data. On 

this basis, an error matrix was produced for each result to present the overall accuracy, the user and 

producer accuracy, and the kappa coefficient. 

2.5. The Correlation between AGB and RS Data 

In the current study, the relationship between AGB and RS data was assessed based on field 

measurements of each vegetation class. In a previous study, TM spectral bands and VIs were tested for 

their ability to predict AGB. Using TM spectral bands or VIs alone was not sufficient to establish 

effective AGB estimates [52]. In the current study, RS data and the reflectance of six individual bands 

(blue, green, red, near-infrared (NIR), and two middle-infrared (MIR)), as well as various VIs and 

elevation data were tested to determine their relationships with AGB using field plot data for various 

types of land cover. The forest inventory plots were identified using GPS. The locations of the forest 

inventory plots were overlaid on the RS data. The elevation data for each plot were generated from the 

SRTM 90-m spatial resolution digital elevation model (DEM) downloaded from USGS [50]. 

Moreover, the mean values from 6 × 6 pixel windows over the plots for each of the spectral variables 

were extracted to reduce the uncertainties of mapping forest AGB due to plot location and the 

uncertainties in RS data resulting from plot positioning errors. These errors included those introduced 

when the sample plots were located using GPS, X- and Y-UTM coordinates that were misleading, and 

sample plots that were mismatched with the image pixels [53]. Landsat spectral variables were 

extracted from image dates that closely approximated the years of the forest inventory plots to reduce 

spatial and temporal data mismatches between these datasets [54]. 

The AGB models for different land covers were developed using many available predictors, 

grouped into three distinct categories: 

 Raw Landsat bands (B1–B5 and B7) as reflectance; 

 VIs, including the simple ratio (SR), difference vegetation index (DVI), normalized difference 

vegetation index (NDVI), ratio vegetation index (RVI), global environmental monitoring index 

(GEMI), soil-adjusted vegetation index (SAVI), enhanced vegetation index (EVI), tasseled cap 

index of greenness (TCG), tasseled cap index of brightness (TCB), and tasseled cap index of 

wetness (TCW); and 

 Topographically derived variables at a spatial resolution of 90 m, including elevation data 

generated from the SRTM 90-m digital elevation model (DEM) downloaded from the USGS. 

Ten widely used indices associated with Landsat RS change detection and biomass estimation were 

used. The tested VIs consisted of the SR of the near infrared and red wavelengths; the DVI, which is a 

simple VI calculated as the difference between the infrared and red wavelengths; the NDVI, which is 
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the ratio of contrasting reflectance between the maximum absorption of the red wavelength due to 

chlorophyll pigments and the maximum reflectance of the infrared wavelength due to leaf cellular 

structure [55]; the RVI, which is a simple VI calculated by dividing the reflectance value of the near 

infrared wavelength by that of the red wavelength [56]; the GEMI, which is a non-linear VI similar to 

the NDVI but less sensitive to atmospheric affects; the SAVI, which is similar to the NDVI but adds a 

soil brightness correction factor [57,58]; the EVI, which was developed to address specific limitations 

of the NDVI by being more sensitive to changes in areas with high biomass and reducing the influence 

of atmospheric conditions on VIs; and the TCG, TCB, and TCW, which were derived directly from the 

raw Landsat bands using the reflectance-based transformation [59]. The TC components have been 

widely used to characterize vegetation conditions and forest change [59,60] (see Table 2 [58,61–65]). 

These indices can measure the presence and density of green vegetation, overall reflectance (e.g., 

differentiating light from dark soils), soil moisture content, and vegetation density (structure) [66].  

We tested traditional indices and a variety of modified VIs because of their wide use in  

characterizing vegetation.  

Table 2. The Landsat vegetation indices (Vis) used in this study. 

VIs for Landsat Multi-Spectral Scanner (MSS) and TM 

Equation Type of Index Reference 

SR = 
3

4

TM

TM
 SR  Tucker [61] 

DVI = 34 TMTM   DVI Tucker [61] 

NDVI = 
34

34

TMTM

TMTM




 NDVI  Tucker [61] 

RVI = 
4

3

TM

TM  RVI Pearson and Miller [62] 

2 2

3 0.125
(1 0.25 ) ;

1 3

2( 4 3 ) 1.5 4 0.5 3

4 3 0.5

TM
GEMI n n

TM

TM TM TM TM
n

TM TM


 



  


 

 
 GEMI Pinty and Verstraete [63] 

SAVI = 
4 3

(1 0.5)
( 4 3 0.5)

TM TM

TM TM 






  SAVI  Huete [58] 

EVI = 
4 3

2.5
4 0.6 3 7.5 1 1

TM TM

TM TM TM


 



  
 EVI Huete et al. [64] 

0.2848 1 0.2435 2 0.5436 3

0.7243 4 0.0840 5 0.1800 7

TCG TM TM TM

TM TM TM

     

   


 TCG Crist et al. [65] 

0.3037 1 0.2793 2 0.4743 3

0.5585 4 0.5082 5 0.1863 7

TCB TM TM TM

TM TM TM

     

   
 TCB Crist et al. [65] 

0.1509 1 0.1973 2 0.3279 3

0.3406 4 0.7112 5 0.4572 7

TCW TM TM TM

TM TM TM

     

   
 TCW Crist et al. [65] 

A preliminary modeling step was used to define a suitable set of predictors for each model type. 

Thus, for each model type, three a priori models were constructed based on the unique variable 

permutations of the Landsat bands, the Landsat bands + spectral indices, and the Landsat bands + spectral 

indices + topographic variables (elevation). A stepwise regression analysis was used to select the best 

predictor from all variables correlated with AGB for each land-cover type. A multiple regression 

http://wiki.landscapetoolbox.org/doku.php/remote_sensing_methods:normalized_difference_vegetation_index
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model was used to identify the relationship between the AGB and RS data. Finally, the biomass 

estimation map for various land-cover types was generated from the models and land cover 

classification resulting from Section 2.4. 

2.6. Model Validation 

The models were evaluated using cross-validation by plot. For this analysis, the data were divided 

into two groups: the observed (y) and predicted (ŷ) values for each land-cover type. The AGB was the 

observed variable in these analyses. The RS data (e.g., TM bands, VIs, and elevation) were the 

predictors. The AGB predictions for each model were validated using a withheld validation dataset by 

calculating the RMSE between the observed and predicted values, as well as the relative RMSE,  

the bias, and the relative bias [54]. The results were validated by comparing the RMSE, the relative 

RMSE, the bias, and the relative bias of each model. Pearson correlation (r) was used to measure the 

strength of the linear relationship between variables. The probability value (p-value) was used to verify 

the performance of the model. 

The RMSE and the relative RMSE were calculated using Equations (6) and (7), where (Ŷi) is the 

predicted AGB of the ith plot and (Yi) is the observed AGB of the ith plot: 

n

YY

RMSE
ii

2
^











  
(6) 

% 100
RMSE

RMSE

Y


   (7) 

The bias and the relative bias were calculated from the difference between the mean predicted AGB 

(
^

Y ) and the mean observed AGB (Ῡ), as shown in Equations (8) and (9): 

YYBias
^

  (8) 

Bias
%  100Bias

Y
  (9) 

3. Results and Discussion 

3.1. Vegetation Structure and Forest Composition 

A total of 197 species were found in the DEF, MDF, and DDF sample sites (100, 91, and 105 species, 

respectively), and 38 species (21.2%) were found in all three forest types (including Mitragyna 

rotundifolia [Roxb.] Kuntze, Irvingia malayana Oliv. ex A. w. Benn., and Millettia brandisiana Kurz). 

A total of 23 species were found in the MDF and DDF sites, 7 species were found in the DEF and 

DDF sites, and 11 species were found in the DEF and MDF sites (see Figure 3). The dominant species 

in the DEF included Lithocarpus polystachyus (Wall.) Rehd., Irvingia malayana Oliv. ex A. w. Benn., 

and Syzygium cumini (L.) Skeels. The dominant species of the MDF were Cananga odorata, Mitragyna 

rotundifolia (Roxb.) Kuntze, and Xylia sylocarpa var. kerrii (Craib and Hutch.) I. Nielsen.  

The dominant species in the DDF were Shorea obtusa. Wall. ex Blume, Shorea siamensis Miq.,  
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and Cananga odorata. The dominant species in the DF were Cananga odorata, Tectona grandis L.f., 

and Shorea obtusa Wall. ex Blume. The dominant species in the PFi were Pterocarpus macrocarpus 

Kurz, Dipterocarpus tuberculatus Roxb, and Cananga odorata. 

Figure 3. The numbers of tree species in the predominant land-cover types in Savannakhet. 

 

Table 3 shows the DBH, H, and average densities of the various land covers. The average tree 

densities per ha of the DEF, MDF, DDF, DF, and PFi were 805, 523, 605, 407, and 48, respectively; 

the average sapling densities per ha of these sites were 16,804, 7813, 9688, 4882, and 43, respectively. 

The average tree DBHs of the DEF, MDF, DDF, DF, and PFi sites were 11.19, 20.49, 13.31, 13.37, 

and 25.63, respectively, and the average sapling DBHs of these sites were 1.9, 2.05, 1.96, 2.05, and 

0.29, respectively. The average tree H values of the DEF, MDF, DDF, DF, and PFi sites were 10.14, 

12.40, 8.77, 7.58, and 9.55, respectively, and the average sapling H values of these sites were 3.58, 

3.55, 2.77, 2.88, and 0.32, respectively. 

Table 3. Average diameter at breast height (DBH), height (H), and density values of the 

trees and saplings for each land-cover type. 

Vegetation Type Land Cover Avg. DBH (cm) Avg. H (m) 
Avg. Density 

(Number/ha) 

Tree DEF 11.19 (7.1–16.8) 10.14 (5.9–15.1) 805 (331–1469) 

 MDF 20.49 (9.2–53) 12.4 (5.3–23) 523 (144–1269) 

 DDF 13.31 (6.8–21.2) 8.77 (5.2–12.2) 605 (138–1238) 

 DF 13.37 (5.5–30.3) 7.58 (3.4–15.3) 407 (19–1400) 

 PFi 25.63 (10.9–39) 9.55 (5.5–16.4) 48 (6–100) 

Sapling DEF 1.9 (1.4–2.4) 3.58 (2.3–6.2) 16,804 (7031–32,344) 

 MDF 2.05 (1.2–2.9) 3.55 (2.3–5) 7813 (156–18,125) 

 DDF 1.96 (0–3.2) 2.77 (0–3.9) 9688 (0–32,656) 

 DF 2.05 (1–3.6) 2.88 (1.8–6.8) 4882 (469–14,531) 

 PFi 0.29 (0–3.2) 0.32 (0–3.5) 43 (0–469) 

Note: The range is shown in parentheses. 

The DEF had the highest average density for both trees and saplings, whereas the MDF had the 

highest average DBH for both trees and saplings. Although the average DBH of the PFi was highest, 

this site had the lowest tree density. The minimum DBH and H values of the saplings in the DDF and 

Figure 3. The numbers of tree species in the predominant land-cover types in Savannakhet. 
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PFi were 0 because several plots had no saplings. The MDF had the highest average H for trees, 

whereas the DEF had the highest average H for saplings. In this study, the DBH and H values of each 

individual tree and sapling in the plots were used to estimate the AGB following the allometric 

equation provided in Table 1. 

3.2. AGB and Soil Carbon Analysis from Field Data 

The data collected from the field were applied with the methodology described in Sections 2.2 and 

2.3. The above-ground biomass and carbon stocks were largely influenced by the DBH, H, and 

density. A summary of the AGB and carbon stocks for various land covers is shown in Tables 4 and 5, 

and a summary of the soil carbon stock is shown in Table 6. 

3.2.1. The AGB Analysis of Each Component from Field Data 

Table 4 shows the results for the field data on the AGB of trees and saplings. The highest average 

AGB of trees in stems, branches, and leaves was found in the MDF, followed by the DEF, DDF, DF, 

and PFi. The results also showed that the highest average AGB in the stems, branches, and leaves of 

saplings belonged to the DEF, followed by DDF, MDF, DF, and PFi. The PFi had the lowest average 

AGB for all of the components of both trees and saplings. 

Table 4. The AGB of each tree and sapling component by vegetation type. 

Component Land Cover N 
Avg. AGB (t/ha) 

Tree Sapling 

Stem DEF 11 46.04 (11.33–105.79) 3.49 (1.02–8.02) 

 MDF 10 112.88 (13.16–447.12) 1.06 (0.03–2.5) 

 DDF 20 37.17 (15.71–72.33) 1.18 (0–4.65) 

 DF 29 22.58 (0.2–77.86) 0.52 (0.03–1.16) 

 PFi 11 9.85 (0.68–55.24) 0.01 (0–0.11) 

Branch DEF 11 13.61 (3–32.41) 0.76 (0.22–1.75) 

 MDF 10 29.06 (3.06–122.77) 0.14 (0–0.33) 

 DDF 20 7.77 (2.93–15.8) 0.16 (0–0.6) 

 DF 29 4.74 (0.03–17.43) 0.07 (0–0.15) 

 PFi 11 2.21 (0.13–12.98) 0 (0–0.01) 

Leaf DEF 11 1.48 (0.57–2.86) 0.4 (0.14–0.89) 

 MDF 10 2 (0.33–4.87) 0 

 DDF 20 1.22 (0.41–2.28) 0 

 DF 29 0.92 (0.01–6.12) 0.01 (0–0.09) 

 PFi 11 0.29 (0.03–1.41) 0 

Total DEF 11 61.13 (14.91–141.06) 4.64 (1.38–10.66) 

 MDF 10 143.95 (16.55–574.76) 1.19 (0.04–2.83) 

 DDF 20 46.17 (19.25–90.34) 1.34 (0–5.26) 

 DF 29 28.24 (0.24–97.53) 0.6 (0.03–1.41) 

 PFi 11 12.34 (0.84–69.63) 0.01 (0–0.13) 

Note: The range is shown in parentheses. 
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3.2.2. Total AGB Analysis of Land-Cover Types from Field Data 

The total AGB was calculated from the trees, saplings, and undergrowth (i.e., vegetation with  

H values less than 1.30 m, including seedlings, shrubs, climbers, grasses, litter (twigs and leaves), and 

paddies). These classes were defined based on their DBH and H values. The highest average total 

AGB for all sites was found for MDF, followed by DEF, DDF, DF, and PFi. Additionally, the PFi had 

the lowest average total AGB. Table 5 shows that 90% of the total AGB was composed of trees.  

The MDF had the highest AGB, whereas the PFi with scattered trees had the lowest AGB. 

Table 5. The total biomass of trees, saplings, and undergrowth by vegetation type. 

Types Land Cover N Avg. Biomass (t/ha) 

Tree DEF 11 61.13 (14.91–141.06) 

 MDF 10 143.95 (16.55–574.76) 

 DDF 20 46.17 (19.25–90.34) 

 DF 29 28.24 (0.24–97.53) 

 PFi 11 12.34 (0.84–69.63) 

Sapling DEF 11 4.64 (1.38–10.66) 

 MDF 10 1.19 (0.04–2.83) 

 DDF 20 1.34 (0–5.26) 

 DF 29 0.6 (0.03–1.32) 

 PFi 11 0.01 (0–0.13) 

Undergrowth DEF 11 0.66 (0.22–1.43) 

 MDF 10 1.45 (0.19–5.77) 

 DDF 20 0.48 (0.21–0.91) 

 DF 29 0.29 (0.01–0.98) 

 PFi 11 0.12 (0.01–0.7) 

Total DEF 11 66.43 (22.51–144.45) 

 MDF 10 146.59 (19.57–582.33) 

 DDF 20 47.99 (21.45–91.84) 

 DF 29 29.13 (0.77–98.77) 

 PFi 11 12.48 (0.85–70.33) 

Note: The range is shown in parentheses. 

3.2.3. Soil Carbon Analysis from Field Data 

The soil carbon stock was estimated to a depth of 30 cm because this depth is the most strongly 

affected by land management practices [46]. Soil carbon was analyzed based on bulk density and the 

soil carbon content percentage (see Table 6). The analysis showed that the MDF and DEF sites had the 

highest soil carbon content percentage at 1.03 and 0.98, respectively. The MDF site had the highest 

soil carbon stock, with an average of 40.17 t per ha, followed by the DEF, PFi, DF, and DDF sites. 

However, the soil carbon of the PFi site was high, suggesting that this paddy area was converted forest 

land [67]. Moreover, the use of fertilization increased the soil organic carbon density of the PFi site. 

The DF site had a higher soil carbon stock level than the DDF site because its forests had been 

disturbed and covered with grass that was high in soil organic carbon and contained an extensive 

fibrous root system that generated an ideal environment for soil microbial activity. 



Remote Sens. 2014, 6 5465 

 

 

Table 6. Average soil carbon content by land-cover type. 

Land Cover Soil Sample Sites Bulk Density (g/cm
3
) 

Soil Carbon 

Contents (%) 

Estimated Soil 

Carbon (t/ha) 

DEF 4 1.25 0.98 (0.95–1.01) 36.75 (35.625–37.875) 

MDF 6 1.3 1.03 (0.99–1.08) 40.17 (38.61–42.12) 

DDF 8 1.45 0.43 (0.3–0.69) 18.705 (13.05–30.015) 

DF 8 1.52 0.58 (0.18–0.83) 26.448 (8.208–37.848) 

PFi 8 1.78 0.67 (0.5–0.83) 35.778 (26.7–44.322) 

Note: The range is shown in parentheses. 

3.2.4. Carbon Stock Analysis from Field Data 

The total carbon stock was estimated from the above-ground carbon stock, converted using 

Equation (7) and the soil carbon content (see Table 7). The MDF site had the highest carbon stock, 

followed by the DEF, PFi, DDF, and DF sites. The MDF had the highest above-ground carbon and soil 

carbon stock. The carbon stock of the DEF site was primarily in the soil rather than in the above-ground 

carbon because this site had the highest tree and sapling density and was high in soil organic carbon. 

The DF and PFi sites were higher in soil carbon than in above-ground carbon. The PFi site had the 

lowest above-ground carbon because it had fewer trees compared with the other land-cover types.  

The PFi site had a higher carbon stock than the DDF site because fertilization had previously increased 

the organic carbon density of the paddy soil. The DF site had a high soil carbon content because its 

forests had been disturbed. The site was covered with grass as a result of the disturbance. The grass 

was high in soil organic carbon and contained an extensive fibrous root system that generated an ideal 

environment for soil microbial activity. 

Table 7. Average total carbon stock by land-cover type. 

Land 

Cover 

Above Ground (t/ha) 

Soil Carbon (t/ha) Total Carbon (t/ha) Biomass Carbon 

DEF 65.77 (22.29–143.02) 30.91 (10.48–67.22) 36.75 (35.63–37.88) 67.66 (46.11–105.1) 

MDF 145.14 (19.37–576.56) 68.22 (9.11–270.98) 40.17 (38.61–42.12) 108.39 (47.72–313.1) 

DDF 47.51 (21.24–90.94) 22.33 (9.98–42.74) 18.71 (13.05–30.02) 41.04 (23.03–72.76) 

DF 28.84 (0.76–97.79) 13.55 (0.36–45.96) 26.45 (8.21–37.85) 40 (8.57–83.81) 

PFi 12.36 (0.84–69.63) 5.81 (0.4–32.73) 35.78 (26.7–44.32) 41.59 (27.1–77.05) 

Note: The range is shown in parentheses. 

The carbon biomass was highest in MDF and lowest in PFi (Table 8). The average carbon stock in 

DEF, MDF, DDF, DF, and PFi was 30.91, 68.22, 22.33, 13.55, and 5.81 (t/ha), respectively.  

A previous study in Kang Min Nho [68] found that the above-ground carbon stock of DEF, MDF,  

and DDF was 228.32, 156.53, and 152.65 (t/ha), respectively, based on direct measurements from the 

field. The results of the current study showed that carbon sequestration was considerably lower in 

Savannakhet than in Kang Min Nho. However, the results of this study are similar to the results 

obtained for carbon stock assessment in Thailand in 2007 and 2013 [69,70], and Lao in 2010 [71].  

The carbon sequestration found by the current study was considerably less than that found by the 

Ogawa et al. study [40]. This result may suggest that the forests examined in the current study were 
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more strongly disturbed and affected by changes in the forestland. The studies also differed due to their 

initial times of study, site qualities, and carrying capacities for carbon sequestration. Furthermore, the 

tropical rain forest investigated in the current study was an immature forest. All of these factors 

potentially affected the differences between the results of the current study and the results of the 

Ogawa et al. study [40]. Additionally, Janmahasatien et al. [72] studied soil carbon in DEF and MDF 

at the Sa-kaerat environmental research station and at the Nakhon Ratchasrima and Maeklong 

watershed stations. The current study found that soil organic carbon was 101.38 tC/ha in our DEF and 

109.2 tC/ha in our MDF. To the best of our knowledge, no previous studies have investigated soil 

carbon in Laos according to forest types. Many factors, e.g., plant density and plant volume, affect 

above-ground biomass. The variables that control below-ground biomass include the soil type, bulk 

density, and forest cover. 

Table 8. Carbon stock values in various forest types found by this study and by previous studies. 

Country 

Carbon Stock (t/ha) 

Year Reference DEF MDF DDF DF PFi 

AG Soil AG Soil AG Soil AG Soil AG Soil 

Lao PDR 30.91 36.75 68.22 40.17 22.33 18.71 13.55 26.45 5.81 35.78 2010 This study 

Lao PDR 228.32 - 156.53 - 152.65 - - - - - 2013 [68] 

Lao PDR - - - - - - 20 - - - 2010 [71] 

Thailand 60.3 - 155.5 - 63 - - - - - 1965 [40] 

Thailand 70.29 - 48.14 - - - - - - - 2007 [27] 

Thailand - - 71.6 - - - - - - - 2007 [69] 

Thailand - - - - 34.35 - - - - - 2013 [70] 

Thailand  101.38  109.2 - - - - - - 2007 [72] 

3.3. RS-Based Biomass Model 

3.3.1. Land-Cover Classification 

The results obtained from the GIS data (e.g., land use) and the hybrid unsupervised and supervised 

classification techniques are shown in Figure 4. According to these results, the MDF and DDF sites 

had the highest coverage areas (624,553.06 and 518,210.50 ha, respectively). The DEF site had the 

lowest coverage area (198,932.81 ha), and the DF site covered a significant area (270,499.50 ha). 

Additionally, the PFi site covered a large area (308,188.44 ha). The rates of disturbance in the DEF, 

MDF, and DDF sites were high. Furthermore, most of the areas in the forest had been disturbed. 

Based on the accuracy assessment using the hybrid classification, the overall accuracy was 82.56% 

(see Table 9). The results showed that PFi had the highest accuracy, followed by MDF, DEF, DDF, 

and DF. DF had the lowest accuracy because it had the greatest variation.  

Table 9. The accuracy assessment of the hybrid land-cover classification technique. 

Land Cover DDF MDF DEF DF PFi Water Total User’s Accuracy (%) 

DDF 69 8 0 12 7 0 96 71.88 

MDF 6 114 9 8 1 2 140 81.43 

DEF 0 2 14 2 0 0 18 77.78 
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Table 9. Cont. 

Land Cover DDF MDF DEF DF PFi Water Total User’s Accuracy (%) 

DF 2 4 1 23 4 0 34 67.65 

PFi 5 1 0 1 96 0 103 93.20 

Water 0 0 0 0 0 39 39 100.00 

Total 82 129 24 46 108 41 355  

Producer’s Accuracy (%) 84.15 88.37 58.33 50.00 88.89 95.12   

Overall Accuracy       82.56  

Kappa       0.78  

Figure 4. Land-cover types in the Savannakhet area. 

 

3.3.2. The AGB Regression Model 

Linear regression models were developed using the previously described method. Comparisons of 

the regression coefficients among the different models based on a single TM band, single VI, 

elevation, or their combinations are presented in the Appendix. TM7 was the best single band and had 

the strongest regression coefficient for the DEF, with an R-value of 0.721. TM4 was the best single 

band for the MDF, DDF, and DF sites, with R-values of 0.504, 0.737, and 0.445, respectively.  

TM2 was the best single band for the PFi site, but it did not have a strong correlation. The VIs 

increasingly improved the relationship between the AGB and the spectral signature for the PFi site and 

slightly improved the relationship for the MDF. The analysis showed that a single TM band had a 

regression model that was sufficiently strong to allow the use of the model coefficients in developing 

biomass estimation models for the DEF and DDF sites but not for the MDF, DF, and PFi sites. 
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Therefore, two or more independent variables were required to improve the relationship between the 

AGB and the RS data. A stepwise regression analysis indicated that if the independent variables in the 

multiple regression models consisted of two or more TM bands, VIs, or other variables (e.g., elevation 

or a combination of the original independent variables), the regression coefficients significantly 

improved the R-values because high correlations were found among the spectral signatures, VIs, and 

the other variables. The results indicated that the RS data, including TM7, TM4, SR, DVI, RVI, SAVI, 

and elevation, were useful predictors of AGB for the DEF, MDF, DDF, DF, and PFi sites (Table 10). 

The DDF and MDF sites were strongly related to TM4 (in the near-infrared band), whereas the DEF 

site was strongly related to TM7 (in the MIR-infrared band). Moreover, the variable calculated from 

the RS data in multiple bands improved the correlation for the MDF, DDF, and PFi sites, and the 

elevation data improved the correlation for the MDF and DF sites. 

The model was established based on field measurements, Landsat TM individual bands, various 

VIs, and the elevation data generated from the SRTM 90-m DEM downloaded from the USGS.  

Table 10 summarizes the best regression models for AGB estimation for each land-cover type in the 

study areas. The results of the model comparisons underscore the challenges posed by model validation 

and comparison. The plot-level validation revealed important but inconsistent differences between the 

five model types. In terms of R-value, RMSE, bias and relative bias, PFi performed best, but it 

exhibited the second weakest relative RMSE. In terms of bias and relative bias, the five models were 

similar, with MDF and PFi slightly positive and DEF, DDF, and DF slightly negative. In terms of  

p-value and relative RMSE, the DDF site was found to have the best and second highest RMSE, bias, 

and relative bias, whereas the DF site had the weakest R-value and relative RMSE but the third best 

RMSE, bias, and relative bias. MDF had the lowest RMSE and bias but the second highest R-value. 

The variable importance plot indicated that the combination of VIs explained the most variability in 

the AGB for the PFi site. Elevation was an important predictor for estimating AGB for the MDF and 

DF sites, and AGB tended to increase at higher elevations. The DF site was associated with the 

weakest correlation between the AGB and Landsat data. Most likely, this result was a consequence of 

the strong biophysical gradients that were correlated with biomass. The pattern within the DF site 

varied; for example, certain areas were strongly disturbed, whereas others were only slightly disturbed. 

In the linear model, the most significant relationships for the PFi site were found for RVI, SAVI, and 

SR, with an R-value of 0.931. The next most significant model for the MDF site was based on SR and 

elevation, with an R-value of 0.866. The third most significant model for the DDF site was based on 

TM4, with an R-value of 0.737. The fourth most significant model for the DEF site was based on 

TM7, with an R-value of 0.721. The weakest significant model for the DF site was based on TM4 and 

elevation, with an R-value of 0.595. These analyses and results implied that the use of a single TM 

band (TM7 or TM4) or a combination of variables (e.g., VIs and elevation) was successful for 

estimating AGB in the Savannakhet area. Additionally, the AGB estimates using the TM 4-5-3 color 

composite (Figure 1) showed that increased AGB is related to stronger vegetation growth stages. The 

total above-ground biomass and carbon stock for each land-cover type using the models is presented in 

Table 11. MDF had the highest AGB, 388.52 Mt, followed by DEF, DDF, DF, and PFi. 
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Table 10. Models used for AGB estimation (t/ha) for each land-cover type. 

Models Used for AGB Estimation for Each Land-Cover Type 

Land

Cover 
Regression Models R

 
p-Value RMSE 

Relative 

RMSE 
Bias 

Relative 

Bias 

DEF AGB = 325.911 + (−10.816 × TM7) 0.721 0.012 24.95 37.93 −0.01 −0.02 

MDF 
AGB = 202.406 + (196.558 × SR) + (−1.884 × 

Elevation) 
0.866 0.027 81.87 54.58 0.07 0.05 

DDF AGB = 101.633 + (−0.796 × TM4) 0.737 0.0003 14.07 29.64 −0.02 −0.05 

DF 
AGB = −17.134 + (−0.816 × TM4) + (0.550 × 

Elevation) 
0.595 0.015 19.72 68.39 −0.02 −0.08 

PFi 
AGB = −1716.153 + (2071.324 × RVI)+(1676.510 

× SAVI) + (−72.293 × SR) 
0.931 0.002 6.9 55.89 0.001 0.008 

Table 11. Total AGB and carbon stock estimation for each land-cover type. 

Land Cover Average AGB (t/ha) Total AGB (Mt) Total AG Carbon (Mt) 

DEF 148.91(23.06–239.38) 32.91 15.47 

MDF 388.52(113.8–587.73) 269.61 126.72 

DDF 53.74(41.14–67.41) 30.94 14.54 

DF 52.93(25.37–194.18) 15.91 7.48 

PFi 37.42(2.77–134.51) 12.81 6.02 

Total  362.18 170.22 

3.3.3. Total Carbon Stock in the Study Area 

The results of the carbon stock analysis are presented in Table 12 and Figure 5. This analysis found 

that the overall carbon stock was approximately 230.50 Mt, with an average of 120 t/ha. The MDF site 

had the highest total carbon stock, followed by the DDF and DEF site. The soil carbon content of the 

DEF, DF, and PFi sites was higher than their above-ground carbon stock (see Table 7). The DEF site 

had the highest density of trees (see Tables 4 and 5). In contrast, as the DF and PFi sites had small 

trees, the carbon stock at these sites was primarily in the soil and not in the above-ground trees. 

However, the MDF site was covered with large trees and had a lower density of trees than the DEF 

site. The soil and above-ground tree carbon stock at the DDF site were approximately the same, 

although the DDF site had larger trees than the DEF site; however, the DDF site also had fewer trees 

because of poor soil quality and illegal logging. 

Table 12. The total carbon stock in Savannakhet Province, Lao People’s Democratic 

Republic (PDR). 

Land Cover Area (ha) Total (Mt) 

DEF 198,932.81 22.78 

MDF 624,553.06 151.80 

DDF 518,210.50 24.23 

DF 270,499.50 14.63 
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Table 12. Cont. 

Land Cover Area (ha) Total (Mt) 

PFi 308,188.44 17.05 

Total 1,920,384.31 230.50 

Note: The range is shown in parentheses. 

Figure 5. Carbon stock map of Savannakhet area. 

 

4. Conclusions 

The results of the study showed a strong statistical relationship between the AGB and Landsat data. 

A linear regression analysis indicated that the strongest relationship was between the PFi site and the 

RS data, followed by the MDF, DDF, DEF, and DF sites. A significant correlation was found between 

the AGB and Landsat data (spectral reflectance, VIs, and elevation). The results of this study showed 

that TM7, TM4, SR, RVI, and SAVI were significantly and positively correlated with AGB in 

Savannakhet Province. Combinations of variables (e.g., Landsat TM band, VIs, and elevation) 

increased the correlations among the PFi, MDF, DF, and AGB, whereas single TM bands were 

strongly correlated with the DEF and DDF sites, as well as with the AGB. Given the accuracy of these 

estimates, the developed models successfully estimated the AGB for different land-cover types in 

Savannakhet Province and could be used to map the AGB in this area in the future. 

However, this research mainly focuses on information of forest plot based measurement since forest 

stores large amount of carbon rather than other land cover. Therefore, carbon conversion factor of 

crop, e.g., paddy should be studied in greater details. Moreover, the factors affecting the reflectance of 
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this area should be studied more in the future including the effect of the undergrowth vegetation on the 

canopy reflectance in a continuum of canopy closure. Landsat data have been widely used in the study 

of forest due to the long run satellite data with free or low cost. A cost-effective approach would be 

very advantage for countries with limited above ground biomass data for developing allometric 

equations. However, the aboveground biomass estimation across the landscape can be improved by 

incorporating tree height as an additional driving variable using light detection and ranging (LiDAR) 

remote sensing technique [16,17]. 
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Appendix 

Table A1. Correlation between RS variables and AGB. 

Land Cover Independent Variable Constant Coefficient R p-Value 

DEF TM Bands TM1 123.855 −1.255 0.366 0.268 

  TM2 200.799 −5.033 0.329 0.323 

  TM3 164.703 −5.016 0.31 0.354 

  TM4 49.622 0.185 0.144 0.673 

  TM5 212.605 −1.941 0.424 0.194 

  TM7 325.911 −10.816 0.721 0.012 

 VIs SR 41.63 5.311 0.23 0.497 

  DVI 52.466 0.197 0.161 0.637 

  NDVI 44.322 36.591 0.203 0.549 

  RVI 74.483 −30.21 0.185 0.585 

  GEMI 59.449 0.001 0.104 0.762 

  SAVI 44.346 24.476 0.203 0.549 

  EVI 53.628 −3.323 0.198 0.559 

  TCG 55.742 0.289 0.192 0.571 

  TCB 101.013 −0.288 0.109 0.751 

  TCW 90.012 1.48 0.383 0.244 

 Topographic Elevation 18.086 0.145 0.312 0.351 

MDF TM Bands TM1 −45.634 3.203 0.163 0.654 

  TM2 103.076 1.599 0.031 0.931 

  TM3 84.647 2.586 0.117 0.748 

  TM4 −7.797 2.92 0.504 0.137 

  TM5 402.993 −3.102 0.198 0.584 

  TM7 160.067 −0.359 0.018 0.96 

 VIs SR −131.759 138.281 0.69 0.027 
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Table A1. Cont. 

Land Cover Independent Variable Constant Coefficient R p-Value 

  DVI 29.349 4.193 0.586 0.075 

  NDVI −23.569 590.49 0.65 0.055 

  RVI 414.139 −458.119 0.622 0.056 

  GEMI 57.203 0.068 0.581 0.078 

  SAVI −23.013 394.673 0.694 0.042 

  EVI 39.471 −358.781 0.544 0.104 

  TCG 132.285 6.638 0.614 0.059 

  TCB −71.973 1.92 0.301 0.398 

  TCW 403.099 8.689 0.605 0.064 

 Topographic Elevation 242.599 −0.385 0.122 0.736 

DDF TM Bands TM1 11.748 0.613 0.265 0.273 

  TM2 110.203 −2.111 0.297 0.217 

  TM3 81.724 −1.361 0.292 0.225 

  TM4 101.633 −0.796 0.737 0.0003 

  TM5 50.954 −0.045 0.021 0.931 

  TM7 46.938 0.02 0.005 0.984 

 VIs SR 82.694 −12.828 0.536 0.018 

  DVI 83.058 −0.829 0.717 0.001 

  NDVI 101.001 −121.166 0.634 0.004 

  RVI −3.662 129.432 0.697 0.001 

  GEMI 65.501 −0.008 0.666 0.002 

  SAVI 100.901 −81.064 0.594 0.007 

  EVI 61.109 19.455 0.566 0.011 

  TCG 60.642 −0.966 0.684 0.001 

  TCB 143.592 −0.798 0.56 0.013 

  TCW 23.501 −1.126 0.517 0.023 

 Topographic Elevation −82.038 0.645 0.439 0.06 

DF TM Bands TM1 −10.123 0.644 0.234 0.221 

  TM2 31.381 −0.081 0.015 0.937 

  TM3 34.893 −0.237 0.055 0.778 

  TM4 96.32 −0.846 0.445 0.015 

  TM5 40.879 −0.135 0.104 0.591 

  TM7 32.519 −0.115 0.053 0.784 

 VIs SR 57.476 −8.613 0.314 0.097 

  DVI 68.09 −0.724 0.401 0.031 

  NDVI 67.291 −75.413 0.298 0.116 

  RVI 1.097 83.44 0.37 0.048 

  GEMI 47.979 −0.006 0.373 0.046 

  SAVI 67.388 −50.646 0.271 0.155 

  EVI 44.601 19.81 0.402 0.031 

  TCG 46.782 −0.868 0.405 0.029 

  TM7 160.067 −0.359 0.018 0.96 
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Table A1. Cont. 

Land Cover Independent Variable Constant Coefficient R p-Value 

 VIs SR −131.759 138.281 0.69 0.027 

  DVI 29.349 4.193 0.586 0.075 

  NDVI −23.569 590.49 0.65 0.055 

  RVI 414.139 −458.119 0.622 0.056 

  GEMI 57.203 0.068 0.581 0.078 

  SAVI −23.013 394.673 0.694 0.042 

  EVI 39.471 −358.781 0.544 0.104 

  TCG 132.285 6.638 0.614 0.059 

  TCB −71.973 1.92 0.301 0.398 

  TCW 403.099 8.689 0.605 0.064 

 Topographic Elevation 242.599 −0.385 0.122 0.736 

DDF TM Bands TM1 11.748 0.613 0.265 0.273 

  TM2 110.203 −2.111 0.297 0.217 

  TM3 81.724 −1.361 0.292 0.225 

  TM4 101.633 −0.796 0.737 0.0003 

  TM5 50.954 −0.045 0.021 0.931 

  TM7 46.938 0.02 0.005 0.984 

 VIs SR 82.694 −12.828 0.536 0.018 

  DVI 83.058 −0.829 0.717 0.001 

  NDVI 101.001 −121.166 0.634 0.004 

  RVI −3.662 129.432 0.697 0.001 

  GEMI 65.501 −0.008 0.666 0.002 

  SAVI 100.901 −81.064 0.594 0.007 

  EVI 61.109 19.455 0.566 0.011 

  TCG 60.642 −0.966 0.684 0.001 

  TCB 143.592 −0.798 0.56 0.013 

  TCW 23.501 −1.126 0.517 0.023 

 Topographic Elevation −82.038 0.645 0.439 0.06 

DF TM Bands TM1 −10.123 0.644 0.234 0.221 

  TM2 31.381 −0.081 0.015 0.937 

  TM3 34.893 −0.237 0.055 0.778 

  TM4 96.32 −0.846 0.445 0.015 

  TM5 40.879 −0.135 0.104 0.591 

  TM7 32.519 −0.115 0.053 0.784 

 VIs SR 57.476 −8.613 0.314 0.097 

  DVI 68.09 −0.724 0.401 0.031 

  NDVI 67.291 −75.413 0.298 0.116 

  RVI 1.097 83.44 0.37 0.048 

  GEMI 47.979 −0.006 0.373 0.046 

  SAVI 67.388 −50.646 0.271 0.155 

  EVI 44.601 19.81 0.402 0.031 

  TCG 46.782 −0.868 0.405 0.029 
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Table A1. Cont. 

Land Cover Independent Variable Constant Coefficient R p-Value 

  TCB 70.735 −0.31 0.221 0.25 

  TCW 28.632 −0.008 0.005 0.979 

 Topographic Elevation −87.027 0.574 0.412 0.026 

PFi TM Bands TM1 −21.89 0.562 0.303 0.365 

  TM2 38.16 −0.762 0.154 0.652 

  TM3 29.51 −0.556 0.206 0.544 

  TM4 60.606 −0.609 0.647 0.031 

  TM5 28.145 −0.174 0.115 0.731 

  TM7 27.007 −0.444 0.207 0.541 

 VIs SR 34.562 −8.333 0.433 0.184 

  DVI 41.743 −0.608 0.609 0.047 

  NDVI 51.703 −93.096 0.612 0.045 

  RVI −30.766 103.482 0.616 0.043 

  GEMI 25.165 −0.005 0.464 0.15 

  SAVI 51.63 −62.232 0.426 0.191 

  EVI 23.573 12.683 0.43 0.187 

  TCG 23.94 −0.695 0.58 0.061 

  TCB 72.31 −0.431 0.434 0.182 

  TCW −1.596 −0.524 0.271 0.42 

 Topographic Elevation −125.23 0.75 0.506 0.112 
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